MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfseqlem1 Structured version   Visualization version   GIF version

Theorem pwfseqlem1 9926
Description: Lemma for pwfseq 9932. Derive a contradiction by diagonalization. (Contributed by Mario Carneiro, 31-May-2015.)
Hypotheses
Ref Expression
pwfseqlem4.g (𝜑𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴𝑚 𝑛))
pwfseqlem4.x (𝜑𝑋𝐴)
pwfseqlem4.h (𝜑𝐻:ω–1-1-onto𝑋)
pwfseqlem4.ps (𝜓 ↔ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥))
pwfseqlem4.k ((𝜑𝜓) → 𝐾: 𝑛 ∈ ω (𝑥𝑚 𝑛)–1-1𝑥)
pwfseqlem4.d 𝐷 = (𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})
Assertion
Ref Expression
pwfseqlem1 ((𝜑𝜓) → 𝐷 ∈ ( 𝑛 ∈ ω (𝐴𝑚 𝑛) ∖ 𝑛 ∈ ω (𝑥𝑚 𝑛)))
Distinct variable groups:   𝑛,𝑟,𝑤,𝑥   𝐷,𝑛   𝑤,𝐺   𝑤,𝐾   𝐻,𝑟,𝑥   𝜑,𝑛,𝑟,𝑥   𝜓,𝑛   𝐴,𝑛,𝑟,𝑥
Allowed substitution hints:   𝜑(𝑤)   𝜓(𝑥,𝑤,𝑟)   𝐴(𝑤)   𝐷(𝑥,𝑤,𝑟)   𝐺(𝑥,𝑛,𝑟)   𝐻(𝑤,𝑛)   𝐾(𝑥,𝑛,𝑟)   𝑋(𝑥,𝑤,𝑛,𝑟)

Proof of Theorem pwfseqlem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pwfseqlem4.d . . 3 𝐷 = (𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})
2 pwfseqlem4.g . . . . . 6 (𝜑𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴𝑚 𝑛))
32adantr 481 . . . . 5 ((𝜑𝜓) → 𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴𝑚 𝑛))
4 f1f 6443 . . . . 5 (𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴𝑚 𝑛) → 𝐺:𝒫 𝐴 𝑛 ∈ ω (𝐴𝑚 𝑛))
53, 4syl 17 . . . 4 ((𝜑𝜓) → 𝐺:𝒫 𝐴 𝑛 ∈ ω (𝐴𝑚 𝑛))
6 ssrab2 3977 . . . . . 6 {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))} ⊆ 𝑥
7 pwfseqlem4.ps . . . . . . 7 (𝜓 ↔ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥))
8 simprl1 1211 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥)) → 𝑥𝐴)
97, 8sylan2b 593 . . . . . 6 ((𝜑𝜓) → 𝑥𝐴)
106, 9syl5ss 3900 . . . . 5 ((𝜑𝜓) → {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))} ⊆ 𝐴)
11 vex 3440 . . . . . . 7 𝑥 ∈ V
1211rabex 5126 . . . . . 6 {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))} ∈ V
1312elpw 4459 . . . . 5 ({𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))} ∈ 𝒫 𝐴 ↔ {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))} ⊆ 𝐴)
1410, 13sylibr 235 . . . 4 ((𝜑𝜓) → {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))} ∈ 𝒫 𝐴)
155, 14ffvelrnd 6717 . . 3 ((𝜑𝜓) → (𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))}) ∈ 𝑛 ∈ ω (𝐴𝑚 𝑛))
161, 15syl5eqel 2887 . 2 ((𝜑𝜓) → 𝐷 𝑛 ∈ ω (𝐴𝑚 𝑛))
17 pm5.19 388 . . 3 ¬ ((𝐾𝐷) ∈ {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))} ↔ ¬ (𝐾𝐷) ∈ {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})
18 pwfseqlem4.k . . . . . . . . 9 ((𝜑𝜓) → 𝐾: 𝑛 ∈ ω (𝑥𝑚 𝑛)–1-1𝑥)
1918adantr 481 . . . . . . . 8 (((𝜑𝜓) ∧ 𝐷 𝑛 ∈ ω (𝑥𝑚 𝑛)) → 𝐾: 𝑛 ∈ ω (𝑥𝑚 𝑛)–1-1𝑥)
20 f1f 6443 . . . . . . . 8 (𝐾: 𝑛 ∈ ω (𝑥𝑚 𝑛)–1-1𝑥𝐾: 𝑛 ∈ ω (𝑥𝑚 𝑛)⟶𝑥)
2119, 20syl 17 . . . . . . 7 (((𝜑𝜓) ∧ 𝐷 𝑛 ∈ ω (𝑥𝑚 𝑛)) → 𝐾: 𝑛 ∈ ω (𝑥𝑚 𝑛)⟶𝑥)
22 ffvelrn 6714 . . . . . . 7 ((𝐾: 𝑛 ∈ ω (𝑥𝑚 𝑛)⟶𝑥𝐷 𝑛 ∈ ω (𝑥𝑚 𝑛)) → (𝐾𝐷) ∈ 𝑥)
2321, 22sylancom 588 . . . . . 6 (((𝜑𝜓) ∧ 𝐷 𝑛 ∈ ω (𝑥𝑚 𝑛)) → (𝐾𝐷) ∈ 𝑥)
24 f1f1orn 6494 . . . . . . . . 9 (𝐾: 𝑛 ∈ ω (𝑥𝑚 𝑛)–1-1𝑥𝐾: 𝑛 ∈ ω (𝑥𝑚 𝑛)–1-1-onto→ran 𝐾)
2519, 24syl 17 . . . . . . . 8 (((𝜑𝜓) ∧ 𝐷 𝑛 ∈ ω (𝑥𝑚 𝑛)) → 𝐾: 𝑛 ∈ ω (𝑥𝑚 𝑛)–1-1-onto→ran 𝐾)
26 f1ocnvfv1 6898 . . . . . . . 8 ((𝐾: 𝑛 ∈ ω (𝑥𝑚 𝑛)–1-1-onto→ran 𝐾𝐷 𝑛 ∈ ω (𝑥𝑚 𝑛)) → (𝐾‘(𝐾𝐷)) = 𝐷)
2725, 26sylancom 588 . . . . . . 7 (((𝜑𝜓) ∧ 𝐷 𝑛 ∈ ω (𝑥𝑚 𝑛)) → (𝐾‘(𝐾𝐷)) = 𝐷)
28 f1fn 6444 . . . . . . . . . . 11 (𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴𝑚 𝑛) → 𝐺 Fn 𝒫 𝐴)
293, 28syl 17 . . . . . . . . . 10 ((𝜑𝜓) → 𝐺 Fn 𝒫 𝐴)
30 fnfvelrn 6713 . . . . . . . . . 10 ((𝐺 Fn 𝒫 𝐴 ∧ {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))} ∈ 𝒫 𝐴) → (𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))}) ∈ ran 𝐺)
3129, 14, 30syl2anc 584 . . . . . . . . 9 ((𝜑𝜓) → (𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))}) ∈ ran 𝐺)
321, 31syl5eqel 2887 . . . . . . . 8 ((𝜑𝜓) → 𝐷 ∈ ran 𝐺)
3332adantr 481 . . . . . . 7 (((𝜑𝜓) ∧ 𝐷 𝑛 ∈ ω (𝑥𝑚 𝑛)) → 𝐷 ∈ ran 𝐺)
3427, 33eqeltrd 2883 . . . . . 6 (((𝜑𝜓) ∧ 𝐷 𝑛 ∈ ω (𝑥𝑚 𝑛)) → (𝐾‘(𝐾𝐷)) ∈ ran 𝐺)
35 fveq2 6538 . . . . . . . . . . 11 (𝑦 = (𝐾𝐷) → (𝐾𝑦) = (𝐾‘(𝐾𝐷)))
3635eleq1d 2867 . . . . . . . . . 10 (𝑦 = (𝐾𝐷) → ((𝐾𝑦) ∈ ran 𝐺 ↔ (𝐾‘(𝐾𝐷)) ∈ ran 𝐺))
37 id 22 . . . . . . . . . . . 12 (𝑦 = (𝐾𝐷) → 𝑦 = (𝐾𝐷))
38 2fveq3 6543 . . . . . . . . . . . 12 (𝑦 = (𝐾𝐷) → (𝐺‘(𝐾𝑦)) = (𝐺‘(𝐾‘(𝐾𝐷))))
3937, 38eleq12d 2877 . . . . . . . . . . 11 (𝑦 = (𝐾𝐷) → (𝑦 ∈ (𝐺‘(𝐾𝑦)) ↔ (𝐾𝐷) ∈ (𝐺‘(𝐾‘(𝐾𝐷)))))
4039notbid 319 . . . . . . . . . 10 (𝑦 = (𝐾𝐷) → (¬ 𝑦 ∈ (𝐺‘(𝐾𝑦)) ↔ ¬ (𝐾𝐷) ∈ (𝐺‘(𝐾‘(𝐾𝐷)))))
4136, 40anbi12d 630 . . . . . . . . 9 (𝑦 = (𝐾𝐷) → (((𝐾𝑦) ∈ ran 𝐺 ∧ ¬ 𝑦 ∈ (𝐺‘(𝐾𝑦))) ↔ ((𝐾‘(𝐾𝐷)) ∈ ran 𝐺 ∧ ¬ (𝐾𝐷) ∈ (𝐺‘(𝐾‘(𝐾𝐷))))))
42 fveq2 6538 . . . . . . . . . . . 12 (𝑤 = 𝑦 → (𝐾𝑤) = (𝐾𝑦))
4342eleq1d 2867 . . . . . . . . . . 11 (𝑤 = 𝑦 → ((𝐾𝑤) ∈ ran 𝐺 ↔ (𝐾𝑦) ∈ ran 𝐺))
44 id 22 . . . . . . . . . . . . 13 (𝑤 = 𝑦𝑤 = 𝑦)
45 2fveq3 6543 . . . . . . . . . . . . 13 (𝑤 = 𝑦 → (𝐺‘(𝐾𝑤)) = (𝐺‘(𝐾𝑦)))
4644, 45eleq12d 2877 . . . . . . . . . . . 12 (𝑤 = 𝑦 → (𝑤 ∈ (𝐺‘(𝐾𝑤)) ↔ 𝑦 ∈ (𝐺‘(𝐾𝑦))))
4746notbid 319 . . . . . . . . . . 11 (𝑤 = 𝑦 → (¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)) ↔ ¬ 𝑦 ∈ (𝐺‘(𝐾𝑦))))
4843, 47anbi12d 630 . . . . . . . . . 10 (𝑤 = 𝑦 → (((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤))) ↔ ((𝐾𝑦) ∈ ran 𝐺 ∧ ¬ 𝑦 ∈ (𝐺‘(𝐾𝑦)))))
4948cbvrabv 3434 . . . . . . . . 9 {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))} = {𝑦𝑥 ∣ ((𝐾𝑦) ∈ ran 𝐺 ∧ ¬ 𝑦 ∈ (𝐺‘(𝐾𝑦)))}
5041, 49elrab2 3621 . . . . . . . 8 ((𝐾𝐷) ∈ {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))} ↔ ((𝐾𝐷) ∈ 𝑥 ∧ ((𝐾‘(𝐾𝐷)) ∈ ran 𝐺 ∧ ¬ (𝐾𝐷) ∈ (𝐺‘(𝐾‘(𝐾𝐷))))))
51 anass 469 . . . . . . . 8 ((((𝐾𝐷) ∈ 𝑥 ∧ (𝐾‘(𝐾𝐷)) ∈ ran 𝐺) ∧ ¬ (𝐾𝐷) ∈ (𝐺‘(𝐾‘(𝐾𝐷)))) ↔ ((𝐾𝐷) ∈ 𝑥 ∧ ((𝐾‘(𝐾𝐷)) ∈ ran 𝐺 ∧ ¬ (𝐾𝐷) ∈ (𝐺‘(𝐾‘(𝐾𝐷))))))
5250, 51bitr4i 279 . . . . . . 7 ((𝐾𝐷) ∈ {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))} ↔ (((𝐾𝐷) ∈ 𝑥 ∧ (𝐾‘(𝐾𝐷)) ∈ ran 𝐺) ∧ ¬ (𝐾𝐷) ∈ (𝐺‘(𝐾‘(𝐾𝐷)))))
5352baib 536 . . . . . 6 (((𝐾𝐷) ∈ 𝑥 ∧ (𝐾‘(𝐾𝐷)) ∈ ran 𝐺) → ((𝐾𝐷) ∈ {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))} ↔ ¬ (𝐾𝐷) ∈ (𝐺‘(𝐾‘(𝐾𝐷)))))
5423, 34, 53syl2anc 584 . . . . 5 (((𝜑𝜓) ∧ 𝐷 𝑛 ∈ ω (𝑥𝑚 𝑛)) → ((𝐾𝐷) ∈ {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))} ↔ ¬ (𝐾𝐷) ∈ (𝐺‘(𝐾‘(𝐾𝐷)))))
5527, 1syl6eq 2847 . . . . . . . . 9 (((𝜑𝜓) ∧ 𝐷 𝑛 ∈ ω (𝑥𝑚 𝑛)) → (𝐾‘(𝐾𝐷)) = (𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))}))
5655fveq2d 6542 . . . . . . . 8 (((𝜑𝜓) ∧ 𝐷 𝑛 ∈ ω (𝑥𝑚 𝑛)) → (𝐺‘(𝐾‘(𝐾𝐷))) = (𝐺‘(𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})))
57 f1f1orn 6494 . . . . . . . . . . 11 (𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴𝑚 𝑛) → 𝐺:𝒫 𝐴1-1-onto→ran 𝐺)
583, 57syl 17 . . . . . . . . . 10 ((𝜑𝜓) → 𝐺:𝒫 𝐴1-1-onto→ran 𝐺)
59 f1ocnvfv1 6898 . . . . . . . . . 10 ((𝐺:𝒫 𝐴1-1-onto→ran 𝐺 ∧ {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))} ∈ 𝒫 𝐴) → (𝐺‘(𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})) = {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})
6058, 14, 59syl2anc 584 . . . . . . . . 9 ((𝜑𝜓) → (𝐺‘(𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})) = {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})
6160adantr 481 . . . . . . . 8 (((𝜑𝜓) ∧ 𝐷 𝑛 ∈ ω (𝑥𝑚 𝑛)) → (𝐺‘(𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})) = {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})
6256, 61eqtrd 2831 . . . . . . 7 (((𝜑𝜓) ∧ 𝐷 𝑛 ∈ ω (𝑥𝑚 𝑛)) → (𝐺‘(𝐾‘(𝐾𝐷))) = {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})
6362eleq2d 2868 . . . . . 6 (((𝜑𝜓) ∧ 𝐷 𝑛 ∈ ω (𝑥𝑚 𝑛)) → ((𝐾𝐷) ∈ (𝐺‘(𝐾‘(𝐾𝐷))) ↔ (𝐾𝐷) ∈ {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))}))
6463notbid 319 . . . . 5 (((𝜑𝜓) ∧ 𝐷 𝑛 ∈ ω (𝑥𝑚 𝑛)) → (¬ (𝐾𝐷) ∈ (𝐺‘(𝐾‘(𝐾𝐷))) ↔ ¬ (𝐾𝐷) ∈ {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))}))
6554, 64bitrd 280 . . . 4 (((𝜑𝜓) ∧ 𝐷 𝑛 ∈ ω (𝑥𝑚 𝑛)) → ((𝐾𝐷) ∈ {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))} ↔ ¬ (𝐾𝐷) ∈ {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))}))
6665ex 413 . . 3 ((𝜑𝜓) → (𝐷 𝑛 ∈ ω (𝑥𝑚 𝑛) → ((𝐾𝐷) ∈ {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))} ↔ ¬ (𝐾𝐷) ∈ {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})))
6717, 66mtoi 200 . 2 ((𝜑𝜓) → ¬ 𝐷 𝑛 ∈ ω (𝑥𝑚 𝑛))
6816, 67eldifd 3870 1 ((𝜑𝜓) → 𝐷 ∈ ( 𝑛 ∈ ω (𝐴𝑚 𝑛) ∖ 𝑛 ∈ ω (𝑥𝑚 𝑛)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wcel 2081  {crab 3109  cdif 3856  wss 3859  𝒫 cpw 4453   ciun 4825   class class class wbr 4962   We wwe 5401   × cxp 5441  ccnv 5442  ran crn 5444   Fn wfn 6220  wf 6221  1-1wf1 6222  1-1-ontowf1o 6224  cfv 6225  (class class class)co 7016  ωcom 7436  𝑚 cmap 8256  cdom 8355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-sbc 3707  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-br 4963  df-opab 5025  df-id 5348  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233
This theorem is referenced by:  pwfseqlem3  9928
  Copyright terms: Public domain W3C validator