MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfseqlem1 Structured version   Visualization version   GIF version

Theorem pwfseqlem1 10414
Description: Lemma for pwfseq 10420. Derive a contradiction by diagonalization. (Contributed by Mario Carneiro, 31-May-2015.)
Hypotheses
Ref Expression
pwfseqlem4.g (𝜑𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))
pwfseqlem4.x (𝜑𝑋𝐴)
pwfseqlem4.h (𝜑𝐻:ω–1-1-onto𝑋)
pwfseqlem4.ps (𝜓 ↔ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥))
pwfseqlem4.k ((𝜑𝜓) → 𝐾: 𝑛 ∈ ω (𝑥m 𝑛)–1-1𝑥)
pwfseqlem4.d 𝐷 = (𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})
Assertion
Ref Expression
pwfseqlem1 ((𝜑𝜓) → 𝐷 ∈ ( 𝑛 ∈ ω (𝐴m 𝑛) ∖ 𝑛 ∈ ω (𝑥m 𝑛)))
Distinct variable groups:   𝑛,𝑟,𝑤,𝑥   𝐷,𝑛   𝑤,𝐺   𝑤,𝐾   𝐻,𝑟,𝑥   𝜑,𝑛,𝑟,𝑥   𝜓,𝑛   𝐴,𝑛,𝑟,𝑥
Allowed substitution hints:   𝜑(𝑤)   𝜓(𝑥,𝑤,𝑟)   𝐴(𝑤)   𝐷(𝑥,𝑤,𝑟)   𝐺(𝑥,𝑛,𝑟)   𝐻(𝑤,𝑛)   𝐾(𝑥,𝑛,𝑟)   𝑋(𝑥,𝑤,𝑛,𝑟)

Proof of Theorem pwfseqlem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pwfseqlem4.d . . 3 𝐷 = (𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})
2 pwfseqlem4.g . . . . . 6 (𝜑𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))
32adantr 481 . . . . 5 ((𝜑𝜓) → 𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))
4 f1f 6670 . . . . 5 (𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛) → 𝐺:𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛))
53, 4syl 17 . . . 4 ((𝜑𝜓) → 𝐺:𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛))
6 ssrab2 4013 . . . . . 6 {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))} ⊆ 𝑥
7 pwfseqlem4.ps . . . . . . 7 (𝜓 ↔ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥))
8 simprl1 1217 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥)) → 𝑥𝐴)
97, 8sylan2b 594 . . . . . 6 ((𝜑𝜓) → 𝑥𝐴)
106, 9sstrid 3932 . . . . 5 ((𝜑𝜓) → {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))} ⊆ 𝐴)
11 vex 3436 . . . . . . 7 𝑥 ∈ V
1211rabex 5256 . . . . . 6 {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))} ∈ V
1312elpw 4537 . . . . 5 ({𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))} ∈ 𝒫 𝐴 ↔ {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))} ⊆ 𝐴)
1410, 13sylibr 233 . . . 4 ((𝜑𝜓) → {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))} ∈ 𝒫 𝐴)
155, 14ffvelrnd 6962 . . 3 ((𝜑𝜓) → (𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))}) ∈ 𝑛 ∈ ω (𝐴m 𝑛))
161, 15eqeltrid 2843 . 2 ((𝜑𝜓) → 𝐷 𝑛 ∈ ω (𝐴m 𝑛))
17 pm5.19 388 . . 3 ¬ ((𝐾𝐷) ∈ {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))} ↔ ¬ (𝐾𝐷) ∈ {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})
18 pwfseqlem4.k . . . . . . . . 9 ((𝜑𝜓) → 𝐾: 𝑛 ∈ ω (𝑥m 𝑛)–1-1𝑥)
1918adantr 481 . . . . . . . 8 (((𝜑𝜓) ∧ 𝐷 𝑛 ∈ ω (𝑥m 𝑛)) → 𝐾: 𝑛 ∈ ω (𝑥m 𝑛)–1-1𝑥)
20 f1f 6670 . . . . . . . 8 (𝐾: 𝑛 ∈ ω (𝑥m 𝑛)–1-1𝑥𝐾: 𝑛 ∈ ω (𝑥m 𝑛)⟶𝑥)
2119, 20syl 17 . . . . . . 7 (((𝜑𝜓) ∧ 𝐷 𝑛 ∈ ω (𝑥m 𝑛)) → 𝐾: 𝑛 ∈ ω (𝑥m 𝑛)⟶𝑥)
22 ffvelrn 6959 . . . . . . 7 ((𝐾: 𝑛 ∈ ω (𝑥m 𝑛)⟶𝑥𝐷 𝑛 ∈ ω (𝑥m 𝑛)) → (𝐾𝐷) ∈ 𝑥)
2321, 22sylancom 588 . . . . . 6 (((𝜑𝜓) ∧ 𝐷 𝑛 ∈ ω (𝑥m 𝑛)) → (𝐾𝐷) ∈ 𝑥)
24 f1f1orn 6727 . . . . . . . . 9 (𝐾: 𝑛 ∈ ω (𝑥m 𝑛)–1-1𝑥𝐾: 𝑛 ∈ ω (𝑥m 𝑛)–1-1-onto→ran 𝐾)
2519, 24syl 17 . . . . . . . 8 (((𝜑𝜓) ∧ 𝐷 𝑛 ∈ ω (𝑥m 𝑛)) → 𝐾: 𝑛 ∈ ω (𝑥m 𝑛)–1-1-onto→ran 𝐾)
26 f1ocnvfv1 7148 . . . . . . . 8 ((𝐾: 𝑛 ∈ ω (𝑥m 𝑛)–1-1-onto→ran 𝐾𝐷 𝑛 ∈ ω (𝑥m 𝑛)) → (𝐾‘(𝐾𝐷)) = 𝐷)
2725, 26sylancom 588 . . . . . . 7 (((𝜑𝜓) ∧ 𝐷 𝑛 ∈ ω (𝑥m 𝑛)) → (𝐾‘(𝐾𝐷)) = 𝐷)
28 f1fn 6671 . . . . . . . . . . 11 (𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛) → 𝐺 Fn 𝒫 𝐴)
293, 28syl 17 . . . . . . . . . 10 ((𝜑𝜓) → 𝐺 Fn 𝒫 𝐴)
30 fnfvelrn 6958 . . . . . . . . . 10 ((𝐺 Fn 𝒫 𝐴 ∧ {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))} ∈ 𝒫 𝐴) → (𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))}) ∈ ran 𝐺)
3129, 14, 30syl2anc 584 . . . . . . . . 9 ((𝜑𝜓) → (𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))}) ∈ ran 𝐺)
321, 31eqeltrid 2843 . . . . . . . 8 ((𝜑𝜓) → 𝐷 ∈ ran 𝐺)
3332adantr 481 . . . . . . 7 (((𝜑𝜓) ∧ 𝐷 𝑛 ∈ ω (𝑥m 𝑛)) → 𝐷 ∈ ran 𝐺)
3427, 33eqeltrd 2839 . . . . . 6 (((𝜑𝜓) ∧ 𝐷 𝑛 ∈ ω (𝑥m 𝑛)) → (𝐾‘(𝐾𝐷)) ∈ ran 𝐺)
35 fveq2 6774 . . . . . . . . . . 11 (𝑦 = (𝐾𝐷) → (𝐾𝑦) = (𝐾‘(𝐾𝐷)))
3635eleq1d 2823 . . . . . . . . . 10 (𝑦 = (𝐾𝐷) → ((𝐾𝑦) ∈ ran 𝐺 ↔ (𝐾‘(𝐾𝐷)) ∈ ran 𝐺))
37 id 22 . . . . . . . . . . . 12 (𝑦 = (𝐾𝐷) → 𝑦 = (𝐾𝐷))
38 2fveq3 6779 . . . . . . . . . . . 12 (𝑦 = (𝐾𝐷) → (𝐺‘(𝐾𝑦)) = (𝐺‘(𝐾‘(𝐾𝐷))))
3937, 38eleq12d 2833 . . . . . . . . . . 11 (𝑦 = (𝐾𝐷) → (𝑦 ∈ (𝐺‘(𝐾𝑦)) ↔ (𝐾𝐷) ∈ (𝐺‘(𝐾‘(𝐾𝐷)))))
4039notbid 318 . . . . . . . . . 10 (𝑦 = (𝐾𝐷) → (¬ 𝑦 ∈ (𝐺‘(𝐾𝑦)) ↔ ¬ (𝐾𝐷) ∈ (𝐺‘(𝐾‘(𝐾𝐷)))))
4136, 40anbi12d 631 . . . . . . . . 9 (𝑦 = (𝐾𝐷) → (((𝐾𝑦) ∈ ran 𝐺 ∧ ¬ 𝑦 ∈ (𝐺‘(𝐾𝑦))) ↔ ((𝐾‘(𝐾𝐷)) ∈ ran 𝐺 ∧ ¬ (𝐾𝐷) ∈ (𝐺‘(𝐾‘(𝐾𝐷))))))
42 fveq2 6774 . . . . . . . . . . . 12 (𝑤 = 𝑦 → (𝐾𝑤) = (𝐾𝑦))
4342eleq1d 2823 . . . . . . . . . . 11 (𝑤 = 𝑦 → ((𝐾𝑤) ∈ ran 𝐺 ↔ (𝐾𝑦) ∈ ran 𝐺))
44 id 22 . . . . . . . . . . . . 13 (𝑤 = 𝑦𝑤 = 𝑦)
45 2fveq3 6779 . . . . . . . . . . . . 13 (𝑤 = 𝑦 → (𝐺‘(𝐾𝑤)) = (𝐺‘(𝐾𝑦)))
4644, 45eleq12d 2833 . . . . . . . . . . . 12 (𝑤 = 𝑦 → (𝑤 ∈ (𝐺‘(𝐾𝑤)) ↔ 𝑦 ∈ (𝐺‘(𝐾𝑦))))
4746notbid 318 . . . . . . . . . . 11 (𝑤 = 𝑦 → (¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)) ↔ ¬ 𝑦 ∈ (𝐺‘(𝐾𝑦))))
4843, 47anbi12d 631 . . . . . . . . . 10 (𝑤 = 𝑦 → (((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤))) ↔ ((𝐾𝑦) ∈ ran 𝐺 ∧ ¬ 𝑦 ∈ (𝐺‘(𝐾𝑦)))))
4948cbvrabv 3426 . . . . . . . . 9 {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))} = {𝑦𝑥 ∣ ((𝐾𝑦) ∈ ran 𝐺 ∧ ¬ 𝑦 ∈ (𝐺‘(𝐾𝑦)))}
5041, 49elrab2 3627 . . . . . . . 8 ((𝐾𝐷) ∈ {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))} ↔ ((𝐾𝐷) ∈ 𝑥 ∧ ((𝐾‘(𝐾𝐷)) ∈ ran 𝐺 ∧ ¬ (𝐾𝐷) ∈ (𝐺‘(𝐾‘(𝐾𝐷))))))
51 anass 469 . . . . . . . 8 ((((𝐾𝐷) ∈ 𝑥 ∧ (𝐾‘(𝐾𝐷)) ∈ ran 𝐺) ∧ ¬ (𝐾𝐷) ∈ (𝐺‘(𝐾‘(𝐾𝐷)))) ↔ ((𝐾𝐷) ∈ 𝑥 ∧ ((𝐾‘(𝐾𝐷)) ∈ ran 𝐺 ∧ ¬ (𝐾𝐷) ∈ (𝐺‘(𝐾‘(𝐾𝐷))))))
5250, 51bitr4i 277 . . . . . . 7 ((𝐾𝐷) ∈ {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))} ↔ (((𝐾𝐷) ∈ 𝑥 ∧ (𝐾‘(𝐾𝐷)) ∈ ran 𝐺) ∧ ¬ (𝐾𝐷) ∈ (𝐺‘(𝐾‘(𝐾𝐷)))))
5352baib 536 . . . . . 6 (((𝐾𝐷) ∈ 𝑥 ∧ (𝐾‘(𝐾𝐷)) ∈ ran 𝐺) → ((𝐾𝐷) ∈ {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))} ↔ ¬ (𝐾𝐷) ∈ (𝐺‘(𝐾‘(𝐾𝐷)))))
5423, 34, 53syl2anc 584 . . . . 5 (((𝜑𝜓) ∧ 𝐷 𝑛 ∈ ω (𝑥m 𝑛)) → ((𝐾𝐷) ∈ {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))} ↔ ¬ (𝐾𝐷) ∈ (𝐺‘(𝐾‘(𝐾𝐷)))))
5527, 1eqtrdi 2794 . . . . . . . . 9 (((𝜑𝜓) ∧ 𝐷 𝑛 ∈ ω (𝑥m 𝑛)) → (𝐾‘(𝐾𝐷)) = (𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))}))
5655fveq2d 6778 . . . . . . . 8 (((𝜑𝜓) ∧ 𝐷 𝑛 ∈ ω (𝑥m 𝑛)) → (𝐺‘(𝐾‘(𝐾𝐷))) = (𝐺‘(𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})))
57 f1f1orn 6727 . . . . . . . . . . 11 (𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛) → 𝐺:𝒫 𝐴1-1-onto→ran 𝐺)
583, 57syl 17 . . . . . . . . . 10 ((𝜑𝜓) → 𝐺:𝒫 𝐴1-1-onto→ran 𝐺)
59 f1ocnvfv1 7148 . . . . . . . . . 10 ((𝐺:𝒫 𝐴1-1-onto→ran 𝐺 ∧ {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))} ∈ 𝒫 𝐴) → (𝐺‘(𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})) = {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})
6058, 14, 59syl2anc 584 . . . . . . . . 9 ((𝜑𝜓) → (𝐺‘(𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})) = {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})
6160adantr 481 . . . . . . . 8 (((𝜑𝜓) ∧ 𝐷 𝑛 ∈ ω (𝑥m 𝑛)) → (𝐺‘(𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})) = {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})
6256, 61eqtrd 2778 . . . . . . 7 (((𝜑𝜓) ∧ 𝐷 𝑛 ∈ ω (𝑥m 𝑛)) → (𝐺‘(𝐾‘(𝐾𝐷))) = {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})
6362eleq2d 2824 . . . . . 6 (((𝜑𝜓) ∧ 𝐷 𝑛 ∈ ω (𝑥m 𝑛)) → ((𝐾𝐷) ∈ (𝐺‘(𝐾‘(𝐾𝐷))) ↔ (𝐾𝐷) ∈ {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))}))
6463notbid 318 . . . . 5 (((𝜑𝜓) ∧ 𝐷 𝑛 ∈ ω (𝑥m 𝑛)) → (¬ (𝐾𝐷) ∈ (𝐺‘(𝐾‘(𝐾𝐷))) ↔ ¬ (𝐾𝐷) ∈ {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))}))
6554, 64bitrd 278 . . . 4 (((𝜑𝜓) ∧ 𝐷 𝑛 ∈ ω (𝑥m 𝑛)) → ((𝐾𝐷) ∈ {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))} ↔ ¬ (𝐾𝐷) ∈ {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))}))
6665ex 413 . . 3 ((𝜑𝜓) → (𝐷 𝑛 ∈ ω (𝑥m 𝑛) → ((𝐾𝐷) ∈ {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))} ↔ ¬ (𝐾𝐷) ∈ {𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})))
6717, 66mtoi 198 . 2 ((𝜑𝜓) → ¬ 𝐷 𝑛 ∈ ω (𝑥m 𝑛))
6816, 67eldifd 3898 1 ((𝜑𝜓) → 𝐷 ∈ ( 𝑛 ∈ ω (𝐴m 𝑛) ∖ 𝑛 ∈ ω (𝑥m 𝑛)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  {crab 3068  cdif 3884  wss 3887  𝒫 cpw 4533   ciun 4924   class class class wbr 5074   We wwe 5543   × cxp 5587  ccnv 5588  ran crn 5590   Fn wfn 6428  wf 6429  1-1wf1 6430  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  ωcom 7712  m cmap 8615  cdom 8731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441
This theorem is referenced by:  pwfseqlem3  10416
  Copyright terms: Public domain W3C validator