Step | Hyp | Ref
| Expression |
1 | | pwfseqlem4.d |
. . 3
⊢ 𝐷 = (𝐺‘{𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))}) |
2 | | pwfseqlem4.g |
. . . . . 6
⊢ (𝜑 → 𝐺:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) |
3 | 2 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝜓) → 𝐺:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) |
4 | | f1f 6670 |
. . . . 5
⊢ (𝐺:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛) → 𝐺:𝒫 𝐴⟶∪
𝑛 ∈ ω (𝐴 ↑m 𝑛)) |
5 | 3, 4 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝜓) → 𝐺:𝒫 𝐴⟶∪
𝑛 ∈ ω (𝐴 ↑m 𝑛)) |
6 | | ssrab2 4013 |
. . . . . 6
⊢ {𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))} ⊆ 𝑥 |
7 | | pwfseqlem4.ps |
. . . . . . 7
⊢ (𝜓 ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥)) |
8 | | simprl1 1217 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥)) → 𝑥 ⊆ 𝐴) |
9 | 7, 8 | sylan2b 594 |
. . . . . 6
⊢ ((𝜑 ∧ 𝜓) → 𝑥 ⊆ 𝐴) |
10 | 6, 9 | sstrid 3932 |
. . . . 5
⊢ ((𝜑 ∧ 𝜓) → {𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))} ⊆ 𝐴) |
11 | | vex 3436 |
. . . . . . 7
⊢ 𝑥 ∈ V |
12 | 11 | rabex 5256 |
. . . . . 6
⊢ {𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))} ∈ V |
13 | 12 | elpw 4537 |
. . . . 5
⊢ ({𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))} ∈ 𝒫 𝐴 ↔ {𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))} ⊆ 𝐴) |
14 | 10, 13 | sylibr 233 |
. . . 4
⊢ ((𝜑 ∧ 𝜓) → {𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))} ∈ 𝒫 𝐴) |
15 | 5, 14 | ffvelrnd 6962 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → (𝐺‘{𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))}) ∈ ∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) |
16 | 1, 15 | eqeltrid 2843 |
. 2
⊢ ((𝜑 ∧ 𝜓) → 𝐷 ∈ ∪
𝑛 ∈ ω (𝐴 ↑m 𝑛)) |
17 | | pm5.19 388 |
. . 3
⊢ ¬
((𝐾‘𝐷) ∈ {𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))} ↔ ¬ (𝐾‘𝐷) ∈ {𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))}) |
18 | | pwfseqlem4.k |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝜓) → 𝐾:∪ 𝑛 ∈ ω (𝑥 ↑m 𝑛)–1-1→𝑥) |
19 | 18 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝜓) ∧ 𝐷 ∈ ∪
𝑛 ∈ ω (𝑥 ↑m 𝑛)) → 𝐾:∪ 𝑛 ∈ ω (𝑥 ↑m 𝑛)–1-1→𝑥) |
20 | | f1f 6670 |
. . . . . . . 8
⊢ (𝐾:∪ 𝑛 ∈ ω (𝑥 ↑m 𝑛)–1-1→𝑥 → 𝐾:∪ 𝑛 ∈ ω (𝑥 ↑m 𝑛)⟶𝑥) |
21 | 19, 20 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝜓) ∧ 𝐷 ∈ ∪
𝑛 ∈ ω (𝑥 ↑m 𝑛)) → 𝐾:∪ 𝑛 ∈ ω (𝑥 ↑m 𝑛)⟶𝑥) |
22 | | ffvelrn 6959 |
. . . . . . 7
⊢ ((𝐾:∪ 𝑛 ∈ ω (𝑥 ↑m 𝑛)⟶𝑥 ∧ 𝐷 ∈ ∪
𝑛 ∈ ω (𝑥 ↑m 𝑛)) → (𝐾‘𝐷) ∈ 𝑥) |
23 | 21, 22 | sylancom 588 |
. . . . . 6
⊢ (((𝜑 ∧ 𝜓) ∧ 𝐷 ∈ ∪
𝑛 ∈ ω (𝑥 ↑m 𝑛)) → (𝐾‘𝐷) ∈ 𝑥) |
24 | | f1f1orn 6727 |
. . . . . . . . 9
⊢ (𝐾:∪ 𝑛 ∈ ω (𝑥 ↑m 𝑛)–1-1→𝑥 → 𝐾:∪ 𝑛 ∈ ω (𝑥 ↑m 𝑛)–1-1-onto→ran
𝐾) |
25 | 19, 24 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝜓) ∧ 𝐷 ∈ ∪
𝑛 ∈ ω (𝑥 ↑m 𝑛)) → 𝐾:∪ 𝑛 ∈ ω (𝑥 ↑m 𝑛)–1-1-onto→ran
𝐾) |
26 | | f1ocnvfv1 7148 |
. . . . . . . 8
⊢ ((𝐾:∪ 𝑛 ∈ ω (𝑥 ↑m 𝑛)–1-1-onto→ran
𝐾 ∧ 𝐷 ∈ ∪
𝑛 ∈ ω (𝑥 ↑m 𝑛)) → (◡𝐾‘(𝐾‘𝐷)) = 𝐷) |
27 | 25, 26 | sylancom 588 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝜓) ∧ 𝐷 ∈ ∪
𝑛 ∈ ω (𝑥 ↑m 𝑛)) → (◡𝐾‘(𝐾‘𝐷)) = 𝐷) |
28 | | f1fn 6671 |
. . . . . . . . . . 11
⊢ (𝐺:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛) → 𝐺 Fn 𝒫 𝐴) |
29 | 3, 28 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝜓) → 𝐺 Fn 𝒫 𝐴) |
30 | | fnfvelrn 6958 |
. . . . . . . . . 10
⊢ ((𝐺 Fn 𝒫 𝐴 ∧ {𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))} ∈ 𝒫 𝐴) → (𝐺‘{𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))}) ∈ ran 𝐺) |
31 | 29, 14, 30 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝜓) → (𝐺‘{𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))}) ∈ ran 𝐺) |
32 | 1, 31 | eqeltrid 2843 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝜓) → 𝐷 ∈ ran 𝐺) |
33 | 32 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝜓) ∧ 𝐷 ∈ ∪
𝑛 ∈ ω (𝑥 ↑m 𝑛)) → 𝐷 ∈ ran 𝐺) |
34 | 27, 33 | eqeltrd 2839 |
. . . . . 6
⊢ (((𝜑 ∧ 𝜓) ∧ 𝐷 ∈ ∪
𝑛 ∈ ω (𝑥 ↑m 𝑛)) → (◡𝐾‘(𝐾‘𝐷)) ∈ ran 𝐺) |
35 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝐾‘𝐷) → (◡𝐾‘𝑦) = (◡𝐾‘(𝐾‘𝐷))) |
36 | 35 | eleq1d 2823 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐾‘𝐷) → ((◡𝐾‘𝑦) ∈ ran 𝐺 ↔ (◡𝐾‘(𝐾‘𝐷)) ∈ ran 𝐺)) |
37 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝐾‘𝐷) → 𝑦 = (𝐾‘𝐷)) |
38 | | 2fveq3 6779 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝐾‘𝐷) → (◡𝐺‘(◡𝐾‘𝑦)) = (◡𝐺‘(◡𝐾‘(𝐾‘𝐷)))) |
39 | 37, 38 | eleq12d 2833 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝐾‘𝐷) → (𝑦 ∈ (◡𝐺‘(◡𝐾‘𝑦)) ↔ (𝐾‘𝐷) ∈ (◡𝐺‘(◡𝐾‘(𝐾‘𝐷))))) |
40 | 39 | notbid 318 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐾‘𝐷) → (¬ 𝑦 ∈ (◡𝐺‘(◡𝐾‘𝑦)) ↔ ¬ (𝐾‘𝐷) ∈ (◡𝐺‘(◡𝐾‘(𝐾‘𝐷))))) |
41 | 36, 40 | anbi12d 631 |
. . . . . . . . 9
⊢ (𝑦 = (𝐾‘𝐷) → (((◡𝐾‘𝑦) ∈ ran 𝐺 ∧ ¬ 𝑦 ∈ (◡𝐺‘(◡𝐾‘𝑦))) ↔ ((◡𝐾‘(𝐾‘𝐷)) ∈ ran 𝐺 ∧ ¬ (𝐾‘𝐷) ∈ (◡𝐺‘(◡𝐾‘(𝐾‘𝐷)))))) |
42 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑦 → (◡𝐾‘𝑤) = (◡𝐾‘𝑦)) |
43 | 42 | eleq1d 2823 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑦 → ((◡𝐾‘𝑤) ∈ ran 𝐺 ↔ (◡𝐾‘𝑦) ∈ ran 𝐺)) |
44 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑦 → 𝑤 = 𝑦) |
45 | | 2fveq3 6779 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑦 → (◡𝐺‘(◡𝐾‘𝑤)) = (◡𝐺‘(◡𝐾‘𝑦))) |
46 | 44, 45 | eleq12d 2833 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑦 → (𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)) ↔ 𝑦 ∈ (◡𝐺‘(◡𝐾‘𝑦)))) |
47 | 46 | notbid 318 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑦 → (¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)) ↔ ¬ 𝑦 ∈ (◡𝐺‘(◡𝐾‘𝑦)))) |
48 | 43, 47 | anbi12d 631 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑦 → (((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤))) ↔ ((◡𝐾‘𝑦) ∈ ran 𝐺 ∧ ¬ 𝑦 ∈ (◡𝐺‘(◡𝐾‘𝑦))))) |
49 | 48 | cbvrabv 3426 |
. . . . . . . . 9
⊢ {𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))} = {𝑦 ∈ 𝑥 ∣ ((◡𝐾‘𝑦) ∈ ran 𝐺 ∧ ¬ 𝑦 ∈ (◡𝐺‘(◡𝐾‘𝑦)))} |
50 | 41, 49 | elrab2 3627 |
. . . . . . . 8
⊢ ((𝐾‘𝐷) ∈ {𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))} ↔ ((𝐾‘𝐷) ∈ 𝑥 ∧ ((◡𝐾‘(𝐾‘𝐷)) ∈ ran 𝐺 ∧ ¬ (𝐾‘𝐷) ∈ (◡𝐺‘(◡𝐾‘(𝐾‘𝐷)))))) |
51 | | anass 469 |
. . . . . . . 8
⊢ ((((𝐾‘𝐷) ∈ 𝑥 ∧ (◡𝐾‘(𝐾‘𝐷)) ∈ ran 𝐺) ∧ ¬ (𝐾‘𝐷) ∈ (◡𝐺‘(◡𝐾‘(𝐾‘𝐷)))) ↔ ((𝐾‘𝐷) ∈ 𝑥 ∧ ((◡𝐾‘(𝐾‘𝐷)) ∈ ran 𝐺 ∧ ¬ (𝐾‘𝐷) ∈ (◡𝐺‘(◡𝐾‘(𝐾‘𝐷)))))) |
52 | 50, 51 | bitr4i 277 |
. . . . . . 7
⊢ ((𝐾‘𝐷) ∈ {𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))} ↔ (((𝐾‘𝐷) ∈ 𝑥 ∧ (◡𝐾‘(𝐾‘𝐷)) ∈ ran 𝐺) ∧ ¬ (𝐾‘𝐷) ∈ (◡𝐺‘(◡𝐾‘(𝐾‘𝐷))))) |
53 | 52 | baib 536 |
. . . . . 6
⊢ (((𝐾‘𝐷) ∈ 𝑥 ∧ (◡𝐾‘(𝐾‘𝐷)) ∈ ran 𝐺) → ((𝐾‘𝐷) ∈ {𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))} ↔ ¬ (𝐾‘𝐷) ∈ (◡𝐺‘(◡𝐾‘(𝐾‘𝐷))))) |
54 | 23, 34, 53 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝜓) ∧ 𝐷 ∈ ∪
𝑛 ∈ ω (𝑥 ↑m 𝑛)) → ((𝐾‘𝐷) ∈ {𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))} ↔ ¬ (𝐾‘𝐷) ∈ (◡𝐺‘(◡𝐾‘(𝐾‘𝐷))))) |
55 | 27, 1 | eqtrdi 2794 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝜓) ∧ 𝐷 ∈ ∪
𝑛 ∈ ω (𝑥 ↑m 𝑛)) → (◡𝐾‘(𝐾‘𝐷)) = (𝐺‘{𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))})) |
56 | 55 | fveq2d 6778 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝜓) ∧ 𝐷 ∈ ∪
𝑛 ∈ ω (𝑥 ↑m 𝑛)) → (◡𝐺‘(◡𝐾‘(𝐾‘𝐷))) = (◡𝐺‘(𝐺‘{𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))}))) |
57 | | f1f1orn 6727 |
. . . . . . . . . . 11
⊢ (𝐺:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛) → 𝐺:𝒫 𝐴–1-1-onto→ran
𝐺) |
58 | 3, 57 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝜓) → 𝐺:𝒫 𝐴–1-1-onto→ran
𝐺) |
59 | | f1ocnvfv1 7148 |
. . . . . . . . . 10
⊢ ((𝐺:𝒫 𝐴–1-1-onto→ran
𝐺 ∧ {𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))} ∈ 𝒫 𝐴) → (◡𝐺‘(𝐺‘{𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))})) = {𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))}) |
60 | 58, 14, 59 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝜓) → (◡𝐺‘(𝐺‘{𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))})) = {𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))}) |
61 | 60 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝜓) ∧ 𝐷 ∈ ∪
𝑛 ∈ ω (𝑥 ↑m 𝑛)) → (◡𝐺‘(𝐺‘{𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))})) = {𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))}) |
62 | 56, 61 | eqtrd 2778 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝜓) ∧ 𝐷 ∈ ∪
𝑛 ∈ ω (𝑥 ↑m 𝑛)) → (◡𝐺‘(◡𝐾‘(𝐾‘𝐷))) = {𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))}) |
63 | 62 | eleq2d 2824 |
. . . . . 6
⊢ (((𝜑 ∧ 𝜓) ∧ 𝐷 ∈ ∪
𝑛 ∈ ω (𝑥 ↑m 𝑛)) → ((𝐾‘𝐷) ∈ (◡𝐺‘(◡𝐾‘(𝐾‘𝐷))) ↔ (𝐾‘𝐷) ∈ {𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))})) |
64 | 63 | notbid 318 |
. . . . 5
⊢ (((𝜑 ∧ 𝜓) ∧ 𝐷 ∈ ∪
𝑛 ∈ ω (𝑥 ↑m 𝑛)) → (¬ (𝐾‘𝐷) ∈ (◡𝐺‘(◡𝐾‘(𝐾‘𝐷))) ↔ ¬ (𝐾‘𝐷) ∈ {𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))})) |
65 | 54, 64 | bitrd 278 |
. . . 4
⊢ (((𝜑 ∧ 𝜓) ∧ 𝐷 ∈ ∪
𝑛 ∈ ω (𝑥 ↑m 𝑛)) → ((𝐾‘𝐷) ∈ {𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))} ↔ ¬ (𝐾‘𝐷) ∈ {𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))})) |
66 | 65 | ex 413 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → (𝐷 ∈ ∪
𝑛 ∈ ω (𝑥 ↑m 𝑛) → ((𝐾‘𝐷) ∈ {𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))} ↔ ¬ (𝐾‘𝐷) ∈ {𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))}))) |
67 | 17, 66 | mtoi 198 |
. 2
⊢ ((𝜑 ∧ 𝜓) → ¬ 𝐷 ∈ ∪
𝑛 ∈ ω (𝑥 ↑m 𝑛)) |
68 | 16, 67 | eldifd 3898 |
1
⊢ ((𝜑 ∧ 𝜓) → 𝐷 ∈ (∪
𝑛 ∈ ω (𝐴 ↑m 𝑛) ∖ ∪ 𝑛 ∈ ω (𝑥 ↑m 𝑛))) |