![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > poeq12d | Structured version Visualization version GIF version |
Description: Equality deduction for partial orderings. (Contributed by Matthew House, 10-Sep-2025.) |
Ref | Expression |
---|---|
poeq12d.1 | ⊢ (𝜑 → 𝑅 = 𝑆) |
poeq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
poeq12d | ⊢ (𝜑 → (𝑅 Po 𝐴 ↔ 𝑆 Po 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | poeq12d.1 | . 2 ⊢ (𝜑 → 𝑅 = 𝑆) | |
2 | poeq12d.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | poeq1 5610 | . . 3 ⊢ (𝑅 = 𝑆 → (𝑅 Po 𝐴 ↔ 𝑆 Po 𝐴)) | |
4 | poeq2 5611 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑆 Po 𝐴 ↔ 𝑆 Po 𝐵)) | |
5 | 3, 4 | sylan9bb 509 | . 2 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → (𝑅 Po 𝐴 ↔ 𝑆 Po 𝐵)) |
6 | 1, 2, 5 | syl2anc 583 | 1 ⊢ (𝜑 → (𝑅 Po 𝐴 ↔ 𝑆 Po 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 Po wpo 5605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-clel 2819 df-ral 3068 df-ss 3993 df-br 5167 df-po 5607 |
This theorem is referenced by: weiunpo 36431 |
Copyright terms: Public domain | W3C validator |