MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  poeq2 Structured version   Visualization version   GIF version

Theorem poeq2 5507
Description: Equality theorem for partial ordering predicate. (Contributed by NM, 27-Mar-1997.)
Assertion
Ref Expression
poeq2 (𝐴 = 𝐵 → (𝑅 Po 𝐴𝑅 Po 𝐵))

Proof of Theorem poeq2
StepHypRef Expression
1 eqimss2 3978 . . 3 (𝐴 = 𝐵𝐵𝐴)
2 poss 5505 . . 3 (𝐵𝐴 → (𝑅 Po 𝐴𝑅 Po 𝐵))
31, 2syl 17 . 2 (𝐴 = 𝐵 → (𝑅 Po 𝐴𝑅 Po 𝐵))
4 eqimss 3977 . . 3 (𝐴 = 𝐵𝐴𝐵)
5 poss 5505 . . 3 (𝐴𝐵 → (𝑅 Po 𝐵𝑅 Po 𝐴))
64, 5syl 17 . 2 (𝐴 = 𝐵 → (𝑅 Po 𝐵𝑅 Po 𝐴))
73, 6impbid 211 1 (𝐴 = 𝐵 → (𝑅 Po 𝐴𝑅 Po 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wss 3887   Po wpo 5501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-v 3434  df-in 3894  df-ss 3904  df-po 5503
This theorem is referenced by:  posn  5672  dfpo2  6199  frfi  9059  ipo0  42067
  Copyright terms: Public domain W3C validator