MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  poeq2 Structured version   Visualization version   GIF version

Theorem poeq2 5570
Description: Equality theorem for partial ordering predicate. (Contributed by NM, 27-Mar-1997.)
Assertion
Ref Expression
poeq2 (𝐴 = 𝐵 → (𝑅 Po 𝐴𝑅 Po 𝐵))

Proof of Theorem poeq2
StepHypRef Expression
1 eqimss2 4023 . . 3 (𝐴 = 𝐵𝐵𝐴)
2 poss 5568 . . 3 (𝐵𝐴 → (𝑅 Po 𝐴𝑅 Po 𝐵))
31, 2syl 17 . 2 (𝐴 = 𝐵 → (𝑅 Po 𝐴𝑅 Po 𝐵))
4 eqimss 4022 . . 3 (𝐴 = 𝐵𝐴𝐵)
5 poss 5568 . . 3 (𝐴𝐵 → (𝑅 Po 𝐵𝑅 Po 𝐴))
64, 5syl 17 . 2 (𝐴 = 𝐵 → (𝑅 Po 𝐵𝑅 Po 𝐴))
73, 6impbid 212 1 (𝐴 = 𝐵 → (𝑅 Po 𝐴𝑅 Po 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wss 3931   Po wpo 5564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2728  df-ral 3053  df-ss 3948  df-po 5566
This theorem is referenced by:  poeq12d  5571  posn  5745  dfpo2  6290  frfi  9298  ipo0  44440
  Copyright terms: Public domain W3C validator