| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > poeq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for partial ordering predicate. (Contributed by NM, 27-Mar-1997.) |
| Ref | Expression |
|---|---|
| poeq2 | ⊢ (𝐴 = 𝐵 → (𝑅 Po 𝐴 ↔ 𝑅 Po 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss2 4023 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐵 ⊆ 𝐴) | |
| 2 | poss 5568 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝑅 Po 𝐴 → 𝑅 Po 𝐵)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 = 𝐵 → (𝑅 Po 𝐴 → 𝑅 Po 𝐵)) |
| 4 | eqimss 4022 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
| 5 | poss 5568 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Po 𝐵 → 𝑅 Po 𝐴)) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝐴 = 𝐵 → (𝑅 Po 𝐵 → 𝑅 Po 𝐴)) |
| 7 | 3, 6 | impbid 212 | 1 ⊢ (𝐴 = 𝐵 → (𝑅 Po 𝐴 ↔ 𝑅 Po 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ⊆ wss 3931 Po wpo 5564 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 df-ral 3053 df-ss 3948 df-po 5566 |
| This theorem is referenced by: poeq12d 5571 posn 5745 dfpo2 6290 frfi 9298 ipo0 44440 |
| Copyright terms: Public domain | W3C validator |