MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-po Structured version   Visualization version   GIF version

Definition df-po 5549
Description: Define the strict partial order predicate. Definition of [Enderton] p. 168. The expression 𝑅 Po 𝐴 means 𝑅 is a partial order on 𝐴. For example, < Po ℝ is true, while ≤ Po ℝ is false (ex-po 30371). (Contributed by NM, 16-Mar-1997.)
Assertion
Ref Expression
df-po (𝑅 Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑅   𝑥,𝐴,𝑦,𝑧

Detailed syntax breakdown of Definition df-po
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2wpo 5547 . 2 wff 𝑅 Po 𝐴
4 vx . . . . . . . . 9 setvar 𝑥
54cv 1539 . . . . . . . 8 class 𝑥
65, 5, 2wbr 5110 . . . . . . 7 wff 𝑥𝑅𝑥
76wn 3 . . . . . 6 wff ¬ 𝑥𝑅𝑥
8 vy . . . . . . . . . 10 setvar 𝑦
98cv 1539 . . . . . . . . 9 class 𝑦
105, 9, 2wbr 5110 . . . . . . . 8 wff 𝑥𝑅𝑦
11 vz . . . . . . . . . 10 setvar 𝑧
1211cv 1539 . . . . . . . . 9 class 𝑧
139, 12, 2wbr 5110 . . . . . . . 8 wff 𝑦𝑅𝑧
1410, 13wa 395 . . . . . . 7 wff (𝑥𝑅𝑦𝑦𝑅𝑧)
155, 12, 2wbr 5110 . . . . . . 7 wff 𝑥𝑅𝑧
1614, 15wi 4 . . . . . 6 wff ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)
177, 16wa 395 . . . . 5 wff 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1817, 11, 1wral 3045 . . . 4 wff 𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1918, 8, 1wral 3045 . . 3 wff 𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
2019, 4, 1wral 3045 . 2 wff 𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
213, 20wb 206 1 wff (𝑅 Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
Colors of variables: wff setvar class
This definition is referenced by:  poss  5551  poeq1  5552  nfpo  5555  pocl  5557  ispod  5558  po0  5566  poinxp  5722  posn  5727  cnvpo  6263  dfpo2  6272  isopolem  7323  porpss  7706  dfwe2  7753  epweon  7754  poxp  8110  poseq  8140  dfso3  35714  elpotr  35776  weiunpo  36460
  Copyright terms: Public domain W3C validator