MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-po Structured version   Visualization version   GIF version

Definition df-po 5451
Description: Define the strict partial order predicate. Definition of [Enderton] p. 168. The expression 𝑅 Po 𝐴 means 𝑅 is a partial order on 𝐴. For example, < Po ℝ is true, while ≤ Po ℝ is false (ex-po 28218). (Contributed by NM, 16-Mar-1997.)
Assertion
Ref Expression
df-po (𝑅 Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑅   𝑥,𝐴,𝑦,𝑧

Detailed syntax breakdown of Definition df-po
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2wpo 5449 . 2 wff 𝑅 Po 𝐴
4 vx . . . . . . . . 9 setvar 𝑥
54cv 1537 . . . . . . . 8 class 𝑥
65, 5, 2wbr 5042 . . . . . . 7 wff 𝑥𝑅𝑥
76wn 3 . . . . . 6 wff ¬ 𝑥𝑅𝑥
8 vy . . . . . . . . . 10 setvar 𝑦
98cv 1537 . . . . . . . . 9 class 𝑦
105, 9, 2wbr 5042 . . . . . . . 8 wff 𝑥𝑅𝑦
11 vz . . . . . . . . . 10 setvar 𝑧
1211cv 1537 . . . . . . . . 9 class 𝑧
139, 12, 2wbr 5042 . . . . . . . 8 wff 𝑦𝑅𝑧
1410, 13wa 399 . . . . . . 7 wff (𝑥𝑅𝑦𝑦𝑅𝑧)
155, 12, 2wbr 5042 . . . . . . 7 wff 𝑥𝑅𝑧
1614, 15wi 4 . . . . . 6 wff ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)
177, 16wa 399 . . . . 5 wff 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1817, 11, 1wral 3130 . . . 4 wff 𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1918, 8, 1wral 3130 . . 3 wff 𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
2019, 4, 1wral 3130 . 2 wff 𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
213, 20wb 209 1 wff (𝑅 Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
Colors of variables: wff setvar class
This definition is referenced by:  poss  5453  poeq1  5454  nfpo  5456  pocl  5458  ispod  5459  po0  5467  poinxp  5609  posn  5614  cnvpo  6116  isopolem  7082  porpss  7438  dfwe2  7481  poxp  7809  dfso3  33024  dfpo2  33065  elpotr  33100  poseq  33169
  Copyright terms: Public domain W3C validator