MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-po Structured version   Visualization version   GIF version

Definition df-po 5561
Description: Define the strict partial order predicate. Definition of [Enderton] p. 168. The expression 𝑅 Po 𝐴 means 𝑅 is a partial order on 𝐴. For example, < Po ℝ is true, while ≤ Po ℝ is false (ex-po 30362). (Contributed by NM, 16-Mar-1997.)
Assertion
Ref Expression
df-po (𝑅 Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑅   𝑥,𝐴,𝑦,𝑧

Detailed syntax breakdown of Definition df-po
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2wpo 5559 . 2 wff 𝑅 Po 𝐴
4 vx . . . . . . . . 9 setvar 𝑥
54cv 1539 . . . . . . . 8 class 𝑥
65, 5, 2wbr 5119 . . . . . . 7 wff 𝑥𝑅𝑥
76wn 3 . . . . . 6 wff ¬ 𝑥𝑅𝑥
8 vy . . . . . . . . . 10 setvar 𝑦
98cv 1539 . . . . . . . . 9 class 𝑦
105, 9, 2wbr 5119 . . . . . . . 8 wff 𝑥𝑅𝑦
11 vz . . . . . . . . . 10 setvar 𝑧
1211cv 1539 . . . . . . . . 9 class 𝑧
139, 12, 2wbr 5119 . . . . . . . 8 wff 𝑦𝑅𝑧
1410, 13wa 395 . . . . . . 7 wff (𝑥𝑅𝑦𝑦𝑅𝑧)
155, 12, 2wbr 5119 . . . . . . 7 wff 𝑥𝑅𝑧
1614, 15wi 4 . . . . . 6 wff ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)
177, 16wa 395 . . . . 5 wff 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1817, 11, 1wral 3051 . . . 4 wff 𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1918, 8, 1wral 3051 . . 3 wff 𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
2019, 4, 1wral 3051 . 2 wff 𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
213, 20wb 206 1 wff (𝑅 Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
Colors of variables: wff setvar class
This definition is referenced by:  poss  5563  poeq1  5564  nfpo  5567  pocl  5569  ispod  5570  po0  5578  poinxp  5735  posn  5740  cnvpo  6276  dfpo2  6285  isopolem  7337  porpss  7719  dfwe2  7766  epweon  7767  poxp  8125  poseq  8155  dfso3  35683  elpotr  35745  weiunpo  36429
  Copyright terms: Public domain W3C validator