![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfpo | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for partial orders. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
Ref | Expression |
---|---|
nfpo.r | ⊢ Ⅎ𝑥𝑅 |
nfpo.a | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfpo | ⊢ Ⅎ𝑥 𝑅 Po 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-po 5607 | . 2 ⊢ (𝑅 Po 𝐴 ↔ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ∀𝑐 ∈ 𝐴 (¬ 𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐))) | |
2 | nfpo.a | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | nfcv 2908 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑎 | |
4 | nfpo.r | . . . . . . . 8 ⊢ Ⅎ𝑥𝑅 | |
5 | 3, 4, 3 | nfbr 5213 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑎𝑅𝑎 |
6 | 5 | nfn 1856 | . . . . . 6 ⊢ Ⅎ𝑥 ¬ 𝑎𝑅𝑎 |
7 | nfcv 2908 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝑏 | |
8 | 3, 4, 7 | nfbr 5213 | . . . . . . . 8 ⊢ Ⅎ𝑥 𝑎𝑅𝑏 |
9 | nfcv 2908 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝑐 | |
10 | 7, 4, 9 | nfbr 5213 | . . . . . . . 8 ⊢ Ⅎ𝑥 𝑏𝑅𝑐 |
11 | 8, 10 | nfan 1898 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) |
12 | 3, 4, 9 | nfbr 5213 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑎𝑅𝑐 |
13 | 11, 12 | nfim 1895 | . . . . . 6 ⊢ Ⅎ𝑥((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐) |
14 | 6, 13 | nfan 1898 | . . . . 5 ⊢ Ⅎ𝑥(¬ 𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐)) |
15 | 2, 14 | nfralw 3317 | . . . 4 ⊢ Ⅎ𝑥∀𝑐 ∈ 𝐴 (¬ 𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐)) |
16 | 2, 15 | nfralw 3317 | . . 3 ⊢ Ⅎ𝑥∀𝑏 ∈ 𝐴 ∀𝑐 ∈ 𝐴 (¬ 𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐)) |
17 | 2, 16 | nfralw 3317 | . 2 ⊢ Ⅎ𝑥∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ∀𝑐 ∈ 𝐴 (¬ 𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐)) |
18 | 1, 17 | nfxfr 1851 | 1 ⊢ Ⅎ𝑥 𝑅 Po 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 Ⅎwnf 1781 Ⅎwnfc 2893 ∀wral 3067 class class class wbr 5166 Po wpo 5605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-po 5607 |
This theorem is referenced by: nfso 5614 weiunpo 36431 |
Copyright terms: Public domain | W3C validator |