MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfpo Structured version   Visualization version   GIF version

Theorem nfpo 5597
Description: Bound-variable hypothesis builder for partial orders. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
nfpo.r 𝑥𝑅
nfpo.a 𝑥𝐴
Assertion
Ref Expression
nfpo 𝑥 𝑅 Po 𝐴

Proof of Theorem nfpo
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-po 5591 . 2 (𝑅 Po 𝐴 ↔ ∀𝑎𝐴𝑏𝐴𝑐𝐴𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏𝑏𝑅𝑐) → 𝑎𝑅𝑐)))
2 nfpo.a . . 3 𝑥𝐴
3 nfcv 2904 . . . . . . . 8 𝑥𝑎
4 nfpo.r . . . . . . . 8 𝑥𝑅
53, 4, 3nfbr 5189 . . . . . . 7 𝑥 𝑎𝑅𝑎
65nfn 1856 . . . . . 6 𝑥 ¬ 𝑎𝑅𝑎
7 nfcv 2904 . . . . . . . . 9 𝑥𝑏
83, 4, 7nfbr 5189 . . . . . . . 8 𝑥 𝑎𝑅𝑏
9 nfcv 2904 . . . . . . . . 9 𝑥𝑐
107, 4, 9nfbr 5189 . . . . . . . 8 𝑥 𝑏𝑅𝑐
118, 10nfan 1898 . . . . . . 7 𝑥(𝑎𝑅𝑏𝑏𝑅𝑐)
123, 4, 9nfbr 5189 . . . . . . 7 𝑥 𝑎𝑅𝑐
1311, 12nfim 1895 . . . . . 6 𝑥((𝑎𝑅𝑏𝑏𝑅𝑐) → 𝑎𝑅𝑐)
146, 13nfan 1898 . . . . 5 𝑥𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏𝑏𝑅𝑐) → 𝑎𝑅𝑐))
152, 14nfralw 3310 . . . 4 𝑥𝑐𝐴𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏𝑏𝑅𝑐) → 𝑎𝑅𝑐))
162, 15nfralw 3310 . . 3 𝑥𝑏𝐴𝑐𝐴𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏𝑏𝑅𝑐) → 𝑎𝑅𝑐))
172, 16nfralw 3310 . 2 𝑥𝑎𝐴𝑏𝐴𝑐𝐴𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏𝑏𝑅𝑐) → 𝑎𝑅𝑐))
181, 17nfxfr 1852 1 𝑥 𝑅 Po 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wnf 1782  wnfc 2889  wral 3060   class class class wbr 5142   Po wpo 5589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ral 3061  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-po 5591
This theorem is referenced by:  nfso  5598  weiunpo  36467
  Copyright terms: Public domain W3C validator