MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.29vvaOLD Structured version   Visualization version   GIF version

Theorem r19.29vvaOLD 3267
Description: Obsolete version of r19.29vva 3266 as of 4-Nov-2024. (Contributed by Thierry Arnoux, 26-Nov-2017.) (Proof shortened by Wolf Lammen, 29-Jun-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
r19.29vva.1 ((((𝜑𝑥𝐴) ∧ 𝑦𝐵) ∧ 𝜓) → 𝜒)
r19.29vva.2 (𝜑 → ∃𝑥𝐴𝑦𝐵 𝜓)
Assertion
Ref Expression
r19.29vvaOLD (𝜑𝜒)
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝜒   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem r19.29vvaOLD
StepHypRef Expression
1 r19.29vva.1 . . 3 ((((𝜑𝑥𝐴) ∧ 𝑦𝐵) ∧ 𝜓) → 𝜒)
2 r19.29vva.2 . . 3 (𝜑 → ∃𝑥𝐴𝑦𝐵 𝜓)
31, 2reximddv2 3207 . 2 (𝜑 → ∃𝑥𝐴𝑦𝐵 𝜒)
4 id 22 . . . 4 (𝜒𝜒)
54rexlimivw 3211 . . 3 (∃𝑦𝐵 𝜒𝜒)
65reximi 3178 . 2 (∃𝑥𝐴𝑦𝐵 𝜒 → ∃𝑥𝐴 𝜒)
74rexlimivw 3211 . 2 (∃𝑥𝐴 𝜒𝜒)
83, 6, 73syl 18 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  wrex 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-ral 3069  df-rex 3070
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator