| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.29vvaOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of r19.29vva 3203 as of 4-Nov-2024. (Contributed by Thierry Arnoux, 26-Nov-2017.) (Proof shortened by Wolf Lammen, 29-Jun-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| r19.29vva.1 | ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) |
| r19.29vva.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
| Ref | Expression |
|---|---|
| r19.29vvaOLD | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.29vva.1 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) | |
| 2 | r19.29vva.2 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) | |
| 3 | 1, 2 | reximddv2 3202 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) |
| 4 | id 22 | . . . 4 ⊢ (𝜒 → 𝜒) | |
| 5 | 4 | rexlimivw 3138 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 𝜒 → 𝜒) |
| 6 | 5 | reximi 3073 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒 → ∃𝑥 ∈ 𝐴 𝜒) |
| 7 | 4 | rexlimivw 3138 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜒 → 𝜒) |
| 8 | 3, 6, 7 | 3syl 18 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ∃wrex 3059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-rex 3060 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |