![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reximddv2 | Structured version Visualization version GIF version |
Description: Double deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
Ref | Expression |
---|---|
reximddv2.1 | ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) |
reximddv2.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
Ref | Expression |
---|---|
reximddv2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximddv2.1 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 414 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝜓 → 𝜒)) |
3 | 2 | reximdva 3169 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∃𝑦 ∈ 𝐵 𝜓 → ∃𝑦 ∈ 𝐵 𝜒)) |
4 | 3 | impr 456 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝜓)) → ∃𝑦 ∈ 𝐵 𝜒) |
5 | reximddv2.2 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) | |
6 | 4, 5 | reximddv 3172 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 ∃wrex 3071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-rex 3072 |
This theorem is referenced by: r19.29vva 3214 r19.29vvaOLD 3215 prmgaplem8 16991 cpmadugsumfi 22379 cpmidg2sum 22382 cayhamlem4 22390 ltgseg 27847 cgraswap 28071 cgracom 28073 cgratr 28074 flatcgra 28075 dfcgra2 28081 xrofsup 31980 prmunb2 43070 |
Copyright terms: Public domain | W3C validator |