| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximddv2 | Structured version Visualization version GIF version | ||
| Description: Double deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
| Ref | Expression |
|---|---|
| reximddv2.1 | ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) |
| reximddv2.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
| Ref | Expression |
|---|---|
| reximddv2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximddv2.1 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 412 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝜓 → 𝜒)) |
| 3 | 2 | reximdva 3146 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∃𝑦 ∈ 𝐵 𝜓 → ∃𝑦 ∈ 𝐵 𝜒)) |
| 4 | 3 | impr 454 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝜓)) → ∃𝑦 ∈ 𝐵 𝜒) |
| 5 | reximddv2.2 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) | |
| 6 | 4, 5 | reximddv 3149 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 ∃wrex 3057 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-rex 3058 |
| This theorem is referenced by: r19.29vva 3193 prmgaplem8 16972 cpmadugsumfi 22793 cpmidg2sum 22796 cayhamlem4 22804 ltgseg 28575 cgraswap 28799 cgracom 28801 cgratr 28802 flatcgra 28803 dfcgra2 28809 xrofsup 32754 elrlocbasi 33240 aks6d1c2 42243 prmunb2 44428 |
| Copyright terms: Public domain | W3C validator |