![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reximddv2 | Structured version Visualization version GIF version |
Description: Double deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
Ref | Expression |
---|---|
reximddv2.1 | ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) |
reximddv2.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
Ref | Expression |
---|---|
reximddv2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximddv2.1 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 412 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝜓 → 𝜒)) |
3 | 2 | reximdva 3165 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∃𝑦 ∈ 𝐵 𝜓 → ∃𝑦 ∈ 𝐵 𝜒)) |
4 | 3 | impr 454 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝜓)) → ∃𝑦 ∈ 𝐵 𝜒) |
5 | reximddv2.2 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) | |
6 | 4, 5 | reximddv 3168 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2099 ∃wrex 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1775 df-rex 3068 |
This theorem is referenced by: r19.29vva 3210 r19.29vvaOLD 3211 prmgaplem8 17026 cpmadugsumfi 22778 cpmidg2sum 22781 cayhamlem4 22789 ltgseg 28399 cgraswap 28623 cgracom 28625 cgratr 28626 flatcgra 28627 dfcgra2 28633 xrofsup 32537 elrlocbasi 32980 aks6d1c2 41601 prmunb2 43748 |
Copyright terms: Public domain | W3C validator |