Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.29vva | Structured version Visualization version GIF version |
Description: A commonly used pattern based on r19.29 3183, version with two restricted quantifiers. (Contributed by Thierry Arnoux, 26-Nov-2017.) (Proof shortened by Wolf Lammen, 4-Nov-2024.) |
Ref | Expression |
---|---|
r19.29vva.1 | ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) |
r19.29vva.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
Ref | Expression |
---|---|
r19.29vva | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.29vva.1 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) | |
2 | r19.29vva.2 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) | |
3 | 1, 2 | reximddv2 3206 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) |
4 | idd 24 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜒 → 𝜒)) | |
5 | 4 | rexlimivv 3220 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒 → 𝜒) |
6 | 3, 5 | syl 17 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-ral 3068 df-rex 3069 |
This theorem is referenced by: trust 23289 utoptop 23294 metustto 23615 restmetu 23632 tgbtwndiff 26771 legov 26850 legso 26864 tglnne 26893 tglndim0 26894 tglinethru 26901 tglnne0 26905 tglnpt2 26906 footexALT 26983 footex 26986 midex 27002 opptgdim2 27010 cgrane1 27077 cgrane2 27078 cgrane3 27079 cgrane4 27080 cgrahl1 27081 cgrahl2 27082 cgracgr 27083 cgratr 27088 cgrabtwn 27091 cgrahl 27092 dfcgra2 27095 sacgr 27096 acopyeu 27099 f1otrge 27137 suppovss 30919 cyc3genpm 31321 cyc3conja 31326 archiabllem2c 31351 ringlsmss1 31486 ringlsmss2 31487 mxidlprm 31542 lindsunlem 31607 dimkerim 31610 txomap 31686 qtophaus 31688 pstmfval 31748 eulerpartlemgvv 32243 tgoldbachgtd 32542 irrapxlem4 40563 |
Copyright terms: Public domain | W3C validator |