MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.29vva Structured version   Visualization version   GIF version

Theorem r19.29vva 3212
Description: A commonly used pattern based on r19.29 3113, version with two restricted quantifiers. (Contributed by Thierry Arnoux, 26-Nov-2017.) (Proof shortened by Wolf Lammen, 4-Nov-2024.)
Hypotheses
Ref Expression
r19.29vva.1 ((((𝜑𝑥𝐴) ∧ 𝑦𝐵) ∧ 𝜓) → 𝜒)
r19.29vva.2 (𝜑 → ∃𝑥𝐴𝑦𝐵 𝜓)
Assertion
Ref Expression
r19.29vva (𝜑𝜒)
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝜒   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem r19.29vva
StepHypRef Expression
1 r19.29vva.1 . . 3 ((((𝜑𝑥𝐴) ∧ 𝑦𝐵) ∧ 𝜓) → 𝜒)
2 r19.29vva.2 . . 3 (𝜑 → ∃𝑥𝐴𝑦𝐵 𝜓)
31, 2reximddv2 3211 . 2 (𝜑 → ∃𝑥𝐴𝑦𝐵 𝜒)
4 idd 24 . . 3 ((𝑥𝐴𝑦𝐵) → (𝜒𝜒))
54rexlimivv 3198 . 2 (∃𝑥𝐴𝑦𝐵 𝜒𝜒)
63, 5syl 17 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2105  wrex 3069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1781  df-rex 3070
This theorem is referenced by:  trust  24055  utoptop  24060  metustto  24383  restmetu  24400  tgbtwndiff  28192  legov  28271  legso  28285  tglnne  28314  tglndim0  28315  tglinethru  28322  tglnne0  28326  tglnpt2  28327  footexALT  28404  footex  28407  midex  28423  opptgdim2  28431  cgrane1  28498  cgrane2  28499  cgrane3  28500  cgrane4  28501  cgrahl1  28502  cgrahl2  28503  cgracgr  28504  cgratr  28509  cgrabtwn  28512  cgrahl  28513  dfcgra2  28516  sacgr  28517  acopyeu  28520  f1otrge  28558  suppovss  32341  cyc3genpm  32749  cyc3conja  32754  archiabllem2c  32779  ringlsmss1  32948  ringlsmss2  32949  mxidlprm  33028  qsdrngilem  33050  lindsunlem  33165  dimkerim  33168  txomap  33280  qtophaus  33282  pstmfval  33342  eulerpartlemgvv  33841  tgoldbachgtd  34140  irrapxlem4  42029
  Copyright terms: Public domain W3C validator