| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.29vva | Structured version Visualization version GIF version | ||
| Description: A commonly used pattern based on r19.29 3094, version with two restricted quantifiers. (Contributed by Thierry Arnoux, 26-Nov-2017.) (Proof shortened by Wolf Lammen, 4-Nov-2024.) |
| Ref | Expression |
|---|---|
| r19.29vva.1 | ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) |
| r19.29vva.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
| Ref | Expression |
|---|---|
| r19.29vva | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.29vva.1 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) | |
| 2 | r19.29vva.2 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) | |
| 3 | 1, 2 | reximddv2 3194 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) |
| 4 | idd 24 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜒 → 𝜒)) | |
| 5 | 4 | rexlimivv 3177 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒 → 𝜒) |
| 6 | 3, 5 | syl 17 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: trust 24093 utoptop 24098 metustto 24417 restmetu 24434 tgbtwndiff 28409 legov 28488 legso 28502 tglnne 28531 tglndim0 28532 tglinethru 28539 tglnne0 28543 tglnpt2 28544 footexALT 28621 footex 28624 midex 28640 opptgdim2 28648 cgrane1 28715 cgrane2 28716 cgrane3 28717 cgrane4 28718 cgrahl1 28719 cgrahl2 28720 cgracgr 28721 cgratr 28726 cgrabtwn 28729 cgrahl 28730 dfcgra2 28733 sacgr 28734 acopyeu 28737 f1otrge 28775 suppovss 32577 elq2 32709 cyc3genpm 33082 cyc3conja 33087 archiabllem2c 33122 elrgspnsubrunlem2 33172 rloccring 33194 rloc1r 33196 fracfld 33231 ringlsmss1 33340 ringlsmss2 33341 mxidlprm 33414 qsdrngilem 33438 zringfrac 33498 lindsunlem 33593 dimkerim 33596 cos9thpiminplylem2 33746 txomap 33797 qtophaus 33799 pstmfval 33859 eulerpartlemgvv 34340 tgoldbachgtd 34626 primrootscoprmpow 42060 posbezout 42061 primrootscoprbij2 42064 primrootspoweq0 42067 aks6d1c2lem4 42088 aks6d1c2 42091 aks6d1c6lem3 42133 aks6d1c6lem5 42138 irrapxlem4 42786 |
| Copyright terms: Public domain | W3C validator |