![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.29vva | Structured version Visualization version GIF version |
Description: A commonly used pattern based on r19.29 3120, version with two restricted quantifiers. (Contributed by Thierry Arnoux, 26-Nov-2017.) (Proof shortened by Wolf Lammen, 4-Nov-2024.) |
Ref | Expression |
---|---|
r19.29vva.1 | ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) |
r19.29vva.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
Ref | Expression |
---|---|
r19.29vva | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.29vva.1 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) | |
2 | r19.29vva.2 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) | |
3 | 1, 2 | reximddv2 3221 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) |
4 | idd 24 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜒 → 𝜒)) | |
5 | 4 | rexlimivv 3207 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒 → 𝜒) |
6 | 3, 5 | syl 17 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-rex 3077 |
This theorem is referenced by: trust 24259 utoptop 24264 metustto 24587 restmetu 24604 tgbtwndiff 28532 legov 28611 legso 28625 tglnne 28654 tglndim0 28655 tglinethru 28662 tglnne0 28666 tglnpt2 28667 footexALT 28744 footex 28747 midex 28763 opptgdim2 28771 cgrane1 28838 cgrane2 28839 cgrane3 28840 cgrane4 28841 cgrahl1 28842 cgrahl2 28843 cgracgr 28844 cgratr 28849 cgrabtwn 28852 cgrahl 28853 dfcgra2 28856 sacgr 28857 acopyeu 28860 f1otrge 28898 suppovss 32697 cyc3genpm 33145 cyc3conja 33150 archiabllem2c 33175 rloccring 33242 rloc1r 33244 fracfld 33275 ringlsmss1 33389 ringlsmss2 33390 mxidlprm 33463 qsdrngilem 33487 zringfrac 33547 lindsunlem 33637 dimkerim 33640 txomap 33780 qtophaus 33782 pstmfval 33842 eulerpartlemgvv 34341 tgoldbachgtd 34639 primrootscoprmpow 42056 posbezout 42057 primrootscoprbij2 42060 primrootspoweq0 42063 aks6d1c2lem4 42084 aks6d1c2 42087 aks6d1c6lem3 42129 aks6d1c6lem5 42134 irrapxlem4 42781 |
Copyright terms: Public domain | W3C validator |