Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.29vva | Structured version Visualization version GIF version |
Description: A commonly used pattern based on r19.29 3184, version with two restricted quantifiers. (Contributed by Thierry Arnoux, 26-Nov-2017.) (Proof shortened by Wolf Lammen, 4-Nov-2024.) |
Ref | Expression |
---|---|
r19.29vva.1 | ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) |
r19.29vva.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
Ref | Expression |
---|---|
r19.29vva | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.29vva.1 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) | |
2 | r19.29vva.2 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) | |
3 | 1, 2 | reximddv2 3207 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) |
4 | idd 24 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜒 → 𝜒)) | |
5 | 4 | rexlimivv 3221 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒 → 𝜒) |
6 | 3, 5 | syl 17 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-ral 3069 df-rex 3070 |
This theorem is referenced by: trust 23381 utoptop 23386 metustto 23709 restmetu 23726 tgbtwndiff 26867 legov 26946 legso 26960 tglnne 26989 tglndim0 26990 tglinethru 26997 tglnne0 27001 tglnpt2 27002 footexALT 27079 footex 27082 midex 27098 opptgdim2 27106 cgrane1 27173 cgrane2 27174 cgrane3 27175 cgrane4 27176 cgrahl1 27177 cgrahl2 27178 cgracgr 27179 cgratr 27184 cgrabtwn 27187 cgrahl 27188 dfcgra2 27191 sacgr 27192 acopyeu 27195 f1otrge 27233 suppovss 31017 cyc3genpm 31419 cyc3conja 31424 archiabllem2c 31449 ringlsmss1 31584 ringlsmss2 31585 mxidlprm 31640 lindsunlem 31705 dimkerim 31708 txomap 31784 qtophaus 31786 pstmfval 31846 eulerpartlemgvv 32343 tgoldbachgtd 32642 irrapxlem4 40647 |
Copyright terms: Public domain | W3C validator |