![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.29vva | Structured version Visualization version GIF version |
Description: A commonly used pattern based on r19.29 3111, version with two restricted quantifiers. (Contributed by Thierry Arnoux, 26-Nov-2017.) (Proof shortened by Wolf Lammen, 4-Nov-2024.) |
Ref | Expression |
---|---|
r19.29vva.1 | ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) |
r19.29vva.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
Ref | Expression |
---|---|
r19.29vva | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.29vva.1 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) | |
2 | r19.29vva.2 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) | |
3 | 1, 2 | reximddv2 3212 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) |
4 | idd 24 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜒 → 𝜒)) | |
5 | 4 | rexlimivv 3198 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒 → 𝜒) |
6 | 3, 5 | syl 17 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 ∃wrex 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-rex 3068 |
This theorem is referenced by: trust 24253 utoptop 24258 metustto 24581 restmetu 24598 tgbtwndiff 28528 legov 28607 legso 28621 tglnne 28650 tglndim0 28651 tglinethru 28658 tglnne0 28662 tglnpt2 28663 footexALT 28740 footex 28743 midex 28759 opptgdim2 28767 cgrane1 28834 cgrane2 28835 cgrane3 28836 cgrane4 28837 cgrahl1 28838 cgrahl2 28839 cgracgr 28840 cgratr 28845 cgrabtwn 28848 cgrahl 28849 dfcgra2 28852 sacgr 28853 acopyeu 28856 f1otrge 28894 suppovss 32695 cyc3genpm 33154 cyc3conja 33159 archiabllem2c 33184 rloccring 33256 rloc1r 33258 fracfld 33289 ringlsmss1 33403 ringlsmss2 33404 mxidlprm 33477 qsdrngilem 33501 zringfrac 33561 lindsunlem 33651 dimkerim 33654 txomap 33794 qtophaus 33796 pstmfval 33856 eulerpartlemgvv 34357 tgoldbachgtd 34655 primrootscoprmpow 42080 posbezout 42081 primrootscoprbij2 42084 primrootspoweq0 42087 aks6d1c2lem4 42108 aks6d1c2 42111 aks6d1c6lem3 42153 aks6d1c6lem5 42158 irrapxlem4 42812 |
Copyright terms: Public domain | W3C validator |