| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.29vva | Structured version Visualization version GIF version | ||
| Description: A commonly used pattern based on r19.29 3101, version with two restricted quantifiers. (Contributed by Thierry Arnoux, 26-Nov-2017.) (Proof shortened by Wolf Lammen, 4-Nov-2024.) |
| Ref | Expression |
|---|---|
| r19.29vva.1 | ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) |
| r19.29vva.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
| Ref | Expression |
|---|---|
| r19.29vva | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.29vva.1 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) | |
| 2 | r19.29vva.2 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) | |
| 3 | 1, 2 | reximddv2 3200 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) |
| 4 | idd 24 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜒 → 𝜒)) | |
| 5 | 4 | rexlimivv 3186 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒 → 𝜒) |
| 6 | 3, 5 | syl 17 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∃wrex 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3061 |
| This theorem is referenced by: trust 24166 utoptop 24171 metustto 24490 restmetu 24507 tgbtwndiff 28431 legov 28510 legso 28524 tglnne 28553 tglndim0 28554 tglinethru 28561 tglnne0 28565 tglnpt2 28566 footexALT 28643 footex 28646 midex 28662 opptgdim2 28670 cgrane1 28737 cgrane2 28738 cgrane3 28739 cgrane4 28740 cgrahl1 28741 cgrahl2 28742 cgracgr 28743 cgratr 28748 cgrabtwn 28751 cgrahl 28752 dfcgra2 28755 sacgr 28756 acopyeu 28759 f1otrge 28797 suppovss 32604 elq2 32736 cyc3genpm 33109 cyc3conja 33114 archiabllem2c 33139 elrgspnsubrunlem2 33189 rloccring 33211 rloc1r 33213 fracfld 33248 ringlsmss1 33357 ringlsmss2 33358 mxidlprm 33431 qsdrngilem 33455 zringfrac 33515 lindsunlem 33610 dimkerim 33613 cos9thpiminplylem2 33763 txomap 33811 qtophaus 33813 pstmfval 33873 eulerpartlemgvv 34354 tgoldbachgtd 34640 primrootscoprmpow 42058 posbezout 42059 primrootscoprbij2 42062 primrootspoweq0 42065 aks6d1c2lem4 42086 aks6d1c2 42089 aks6d1c6lem3 42131 aks6d1c6lem5 42136 irrapxlem4 42795 |
| Copyright terms: Public domain | W3C validator |