![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.29vva | Structured version Visualization version GIF version |
Description: A commonly used pattern based on r19.29 3115, version with two restricted quantifiers. (Contributed by Thierry Arnoux, 26-Nov-2017.) (Proof shortened by Wolf Lammen, 4-Nov-2024.) |
Ref | Expression |
---|---|
r19.29vva.1 | ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) |
r19.29vva.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
Ref | Expression |
---|---|
r19.29vva | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.29vva.1 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) | |
2 | r19.29vva.2 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) | |
3 | 1, 2 | reximddv2 3213 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) |
4 | idd 24 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜒 → 𝜒)) | |
5 | 4 | rexlimivv 3200 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒 → 𝜒) |
6 | 3, 5 | syl 17 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 ∃wrex 3071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-rex 3072 |
This theorem is referenced by: trust 23734 utoptop 23739 metustto 24062 restmetu 24079 tgbtwndiff 27757 legov 27836 legso 27850 tglnne 27879 tglndim0 27880 tglinethru 27887 tglnne0 27891 tglnpt2 27892 footexALT 27969 footex 27972 midex 27988 opptgdim2 27996 cgrane1 28063 cgrane2 28064 cgrane3 28065 cgrane4 28066 cgrahl1 28067 cgrahl2 28068 cgracgr 28069 cgratr 28074 cgrabtwn 28077 cgrahl 28078 dfcgra2 28081 sacgr 28082 acopyeu 28085 f1otrge 28123 suppovss 31906 cyc3genpm 32311 cyc3conja 32316 archiabllem2c 32341 ringlsmss1 32506 ringlsmss2 32507 mxidlprm 32586 qsdrngilem 32608 lindsunlem 32709 dimkerim 32712 txomap 32814 qtophaus 32816 pstmfval 32876 eulerpartlemgvv 33375 tgoldbachgtd 33674 irrapxlem4 41563 |
Copyright terms: Public domain | W3C validator |