MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.29vva Structured version   Visualization version   GIF version

Theorem r19.29vva 3263
Description: A commonly used pattern based on r19.29 3183, version with two restricted quantifiers. (Contributed by Thierry Arnoux, 26-Nov-2017.) (Proof shortened by Wolf Lammen, 4-Nov-2024.)
Hypotheses
Ref Expression
r19.29vva.1 ((((𝜑𝑥𝐴) ∧ 𝑦𝐵) ∧ 𝜓) → 𝜒)
r19.29vva.2 (𝜑 → ∃𝑥𝐴𝑦𝐵 𝜓)
Assertion
Ref Expression
r19.29vva (𝜑𝜒)
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝜒   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem r19.29vva
StepHypRef Expression
1 r19.29vva.1 . . 3 ((((𝜑𝑥𝐴) ∧ 𝑦𝐵) ∧ 𝜓) → 𝜒)
2 r19.29vva.2 . . 3 (𝜑 → ∃𝑥𝐴𝑦𝐵 𝜓)
31, 2reximddv2 3206 . 2 (𝜑 → ∃𝑥𝐴𝑦𝐵 𝜒)
4 idd 24 . . 3 ((𝑥𝐴𝑦𝐵) → (𝜒𝜒))
54rexlimivv 3220 . 2 (∃𝑥𝐴𝑦𝐵 𝜒𝜒)
63, 5syl 17 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wrex 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-ral 3068  df-rex 3069
This theorem is referenced by:  trust  23289  utoptop  23294  metustto  23615  restmetu  23632  tgbtwndiff  26771  legov  26850  legso  26864  tglnne  26893  tglndim0  26894  tglinethru  26901  tglnne0  26905  tglnpt2  26906  footexALT  26983  footex  26986  midex  27002  opptgdim2  27010  cgrane1  27077  cgrane2  27078  cgrane3  27079  cgrane4  27080  cgrahl1  27081  cgrahl2  27082  cgracgr  27083  cgratr  27088  cgrabtwn  27091  cgrahl  27092  dfcgra2  27095  sacgr  27096  acopyeu  27099  f1otrge  27137  suppovss  30919  cyc3genpm  31321  cyc3conja  31326  archiabllem2c  31351  ringlsmss1  31486  ringlsmss2  31487  mxidlprm  31542  lindsunlem  31607  dimkerim  31610  txomap  31686  qtophaus  31688  pstmfval  31748  eulerpartlemgvv  32243  tgoldbachgtd  32542  irrapxlem4  40563
  Copyright terms: Public domain W3C validator