MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.29vva Structured version   Visualization version   GIF version

Theorem r19.29vva 3189
Description: A commonly used pattern based on r19.29 3092, version with two restricted quantifiers. (Contributed by Thierry Arnoux, 26-Nov-2017.) (Proof shortened by Wolf Lammen, 4-Nov-2024.)
Hypotheses
Ref Expression
r19.29vva.1 ((((𝜑𝑥𝐴) ∧ 𝑦𝐵) ∧ 𝜓) → 𝜒)
r19.29vva.2 (𝜑 → ∃𝑥𝐴𝑦𝐵 𝜓)
Assertion
Ref Expression
r19.29vva (𝜑𝜒)
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝜒   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem r19.29vva
StepHypRef Expression
1 r19.29vva.1 . . 3 ((((𝜑𝑥𝐴) ∧ 𝑦𝐵) ∧ 𝜓) → 𝜒)
2 r19.29vva.2 . . 3 (𝜑 → ∃𝑥𝐴𝑦𝐵 𝜓)
31, 2reximddv2 3188 . 2 (𝜑 → ∃𝑥𝐴𝑦𝐵 𝜒)
4 idd 24 . . 3 ((𝑥𝐴𝑦𝐵) → (𝜒𝜒))
54rexlimivv 3171 . 2 (∃𝑥𝐴𝑦𝐵 𝜒𝜒)
63, 5syl 17 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wrex 3053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-rex 3054
This theorem is referenced by:  trust  24115  utoptop  24120  metustto  24439  restmetu  24456  tgbtwndiff  28451  legov  28530  legso  28544  tglnne  28573  tglndim0  28574  tglinethru  28581  tglnne0  28585  tglnpt2  28586  footexALT  28663  footex  28666  midex  28682  opptgdim2  28690  cgrane1  28757  cgrane2  28758  cgrane3  28759  cgrane4  28760  cgrahl1  28761  cgrahl2  28762  cgracgr  28763  cgratr  28768  cgrabtwn  28771  cgrahl  28772  dfcgra2  28775  sacgr  28776  acopyeu  28779  f1otrge  28817  suppovss  32623  elq2  32756  cyc3genpm  33094  cyc3conja  33099  archiabllem2c  33137  elrgspnsubrunlem2  33188  rloccring  33210  rloc1r  33212  fracfld  33247  ringlsmss1  33333  ringlsmss2  33334  mxidlprm  33407  qsdrngilem  33431  zringfrac  33491  lindsunlem  33591  dimkerim  33594  cos9thpiminplylem2  33750  txomap  33801  qtophaus  33803  pstmfval  33863  eulerpartlemgvv  34344  tgoldbachgtd  34630  primrootscoprmpow  42072  posbezout  42073  primrootscoprbij2  42076  primrootspoweq0  42079  aks6d1c2lem4  42100  aks6d1c2  42103  aks6d1c6lem3  42145  aks6d1c6lem5  42150  irrapxlem4  42798
  Copyright terms: Public domain W3C validator