| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.29vva | Structured version Visualization version GIF version | ||
| Description: A commonly used pattern based on r19.29 3092, version with two restricted quantifiers. (Contributed by Thierry Arnoux, 26-Nov-2017.) (Proof shortened by Wolf Lammen, 4-Nov-2024.) |
| Ref | Expression |
|---|---|
| r19.29vva.1 | ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) |
| r19.29vva.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
| Ref | Expression |
|---|---|
| r19.29vva | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.29vva.1 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) | |
| 2 | r19.29vva.2 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) | |
| 3 | 1, 2 | reximddv2 3188 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) |
| 4 | idd 24 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜒 → 𝜒)) | |
| 5 | 4 | rexlimivv 3171 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒 → 𝜒) |
| 6 | 3, 5 | syl 17 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: trust 24115 utoptop 24120 metustto 24439 restmetu 24456 tgbtwndiff 28451 legov 28530 legso 28544 tglnne 28573 tglndim0 28574 tglinethru 28581 tglnne0 28585 tglnpt2 28586 footexALT 28663 footex 28666 midex 28682 opptgdim2 28690 cgrane1 28757 cgrane2 28758 cgrane3 28759 cgrane4 28760 cgrahl1 28761 cgrahl2 28762 cgracgr 28763 cgratr 28768 cgrabtwn 28771 cgrahl 28772 dfcgra2 28775 sacgr 28776 acopyeu 28779 f1otrge 28817 suppovss 32623 elq2 32756 cyc3genpm 33094 cyc3conja 33099 archiabllem2c 33137 elrgspnsubrunlem2 33188 rloccring 33210 rloc1r 33212 fracfld 33247 ringlsmss1 33333 ringlsmss2 33334 mxidlprm 33407 qsdrngilem 33431 zringfrac 33491 lindsunlem 33591 dimkerim 33594 cos9thpiminplylem2 33750 txomap 33801 qtophaus 33803 pstmfval 33863 eulerpartlemgvv 34344 tgoldbachgtd 34630 primrootscoprmpow 42072 posbezout 42073 primrootscoprbij2 42076 primrootspoweq0 42079 aks6d1c2lem4 42100 aks6d1c2 42103 aks6d1c6lem3 42145 aks6d1c6lem5 42150 irrapxlem4 42798 |
| Copyright terms: Public domain | W3C validator |