| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.29vva | Structured version Visualization version GIF version | ||
| Description: A commonly used pattern based on r19.29 3095, version with two restricted quantifiers. (Contributed by Thierry Arnoux, 26-Nov-2017.) (Proof shortened by Wolf Lammen, 4-Nov-2024.) |
| Ref | Expression |
|---|---|
| r19.29vva.1 | ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) |
| r19.29vva.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
| Ref | Expression |
|---|---|
| r19.29vva | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.29vva.1 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) | |
| 2 | r19.29vva.2 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) | |
| 3 | 1, 2 | reximddv2 3197 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) |
| 4 | idd 24 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜒 → 𝜒)) | |
| 5 | 4 | rexlimivv 3180 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒 → 𝜒) |
| 6 | 3, 5 | syl 17 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∃wrex 3054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3055 |
| This theorem is referenced by: trust 24124 utoptop 24129 metustto 24448 restmetu 24465 tgbtwndiff 28440 legov 28519 legso 28533 tglnne 28562 tglndim0 28563 tglinethru 28570 tglnne0 28574 tglnpt2 28575 footexALT 28652 footex 28655 midex 28671 opptgdim2 28679 cgrane1 28746 cgrane2 28747 cgrane3 28748 cgrane4 28749 cgrahl1 28750 cgrahl2 28751 cgracgr 28752 cgratr 28757 cgrabtwn 28760 cgrahl 28761 dfcgra2 28764 sacgr 28765 acopyeu 28768 f1otrge 28806 suppovss 32611 elq2 32743 cyc3genpm 33116 cyc3conja 33121 archiabllem2c 33156 elrgspnsubrunlem2 33206 rloccring 33228 rloc1r 33230 fracfld 33265 ringlsmss1 33374 ringlsmss2 33375 mxidlprm 33448 qsdrngilem 33472 zringfrac 33532 lindsunlem 33627 dimkerim 33630 cos9thpiminplylem2 33780 txomap 33831 qtophaus 33833 pstmfval 33893 eulerpartlemgvv 34374 tgoldbachgtd 34660 primrootscoprmpow 42094 posbezout 42095 primrootscoprbij2 42098 primrootspoweq0 42101 aks6d1c2lem4 42122 aks6d1c2 42125 aks6d1c6lem3 42167 aks6d1c6lem5 42172 irrapxlem4 42820 |
| Copyright terms: Public domain | W3C validator |