![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.29vva | Structured version Visualization version GIF version |
Description: A commonly used pattern based on r19.29 3113, version with two restricted quantifiers. (Contributed by Thierry Arnoux, 26-Nov-2017.) (Proof shortened by Wolf Lammen, 4-Nov-2024.) |
Ref | Expression |
---|---|
r19.29vva.1 | ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) |
r19.29vva.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
Ref | Expression |
---|---|
r19.29vva | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.29vva.1 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) | |
2 | r19.29vva.2 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) | |
3 | 1, 2 | reximddv2 3211 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) |
4 | idd 24 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜒 → 𝜒)) | |
5 | 4 | rexlimivv 3198 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒 → 𝜒) |
6 | 3, 5 | syl 17 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 ∃wrex 3069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1781 df-rex 3070 |
This theorem is referenced by: trust 24055 utoptop 24060 metustto 24383 restmetu 24400 tgbtwndiff 28192 legov 28271 legso 28285 tglnne 28314 tglndim0 28315 tglinethru 28322 tglnne0 28326 tglnpt2 28327 footexALT 28404 footex 28407 midex 28423 opptgdim2 28431 cgrane1 28498 cgrane2 28499 cgrane3 28500 cgrane4 28501 cgrahl1 28502 cgrahl2 28503 cgracgr 28504 cgratr 28509 cgrabtwn 28512 cgrahl 28513 dfcgra2 28516 sacgr 28517 acopyeu 28520 f1otrge 28558 suppovss 32341 cyc3genpm 32749 cyc3conja 32754 archiabllem2c 32779 ringlsmss1 32948 ringlsmss2 32949 mxidlprm 33028 qsdrngilem 33050 lindsunlem 33165 dimkerim 33168 txomap 33280 qtophaus 33282 pstmfval 33342 eulerpartlemgvv 33841 tgoldbachgtd 34140 irrapxlem4 42029 |
Copyright terms: Public domain | W3C validator |