MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.29vva Structured version   Visualization version   GIF version

Theorem r19.29vva 3192
Description: A commonly used pattern based on r19.29 3095, version with two restricted quantifiers. (Contributed by Thierry Arnoux, 26-Nov-2017.) (Proof shortened by Wolf Lammen, 4-Nov-2024.)
Hypotheses
Ref Expression
r19.29vva.1 ((((𝜑𝑥𝐴) ∧ 𝑦𝐵) ∧ 𝜓) → 𝜒)
r19.29vva.2 (𝜑 → ∃𝑥𝐴𝑦𝐵 𝜓)
Assertion
Ref Expression
r19.29vva (𝜑𝜒)
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝜒   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem r19.29vva
StepHypRef Expression
1 r19.29vva.1 . . 3 ((((𝜑𝑥𝐴) ∧ 𝑦𝐵) ∧ 𝜓) → 𝜒)
2 r19.29vva.2 . . 3 (𝜑 → ∃𝑥𝐴𝑦𝐵 𝜓)
31, 2reximddv2 3191 . 2 (𝜑 → ∃𝑥𝐴𝑦𝐵 𝜒)
4 idd 24 . . 3 ((𝑥𝐴𝑦𝐵) → (𝜒𝜒))
54rexlimivv 3174 . 2 (∃𝑥𝐴𝑦𝐵 𝜒𝜒)
63, 5syl 17 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  wrex 3056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-rex 3057
This theorem is referenced by:  trust  24139  utoptop  24144  metustto  24463  restmetu  24480  tgbtwndiff  28479  legov  28558  legso  28572  tglnne  28601  tglndim0  28602  tglinethru  28609  tglnne0  28613  tglnpt2  28614  footexALT  28691  footex  28694  midex  28710  opptgdim2  28718  cgrane1  28785  cgrane2  28786  cgrane3  28787  cgrane4  28788  cgrahl1  28789  cgrahl2  28790  cgracgr  28791  cgratr  28796  cgrabtwn  28799  cgrahl  28800  dfcgra2  28803  sacgr  28804  acopyeu  28807  f1otrge  28845  suppovss  32654  elq2  32786  cyc3genpm  33113  cyc3conja  33118  archiabllem2c  33156  elrgspnsubrunlem2  33207  rloccring  33229  rloc1r  33231  fracfld  33266  ringlsmss1  33353  ringlsmss2  33354  mxidlprm  33427  qsdrngilem  33451  zringfrac  33511  lindsunlem  33629  dimkerim  33632  cos9thpiminplylem2  33788  txomap  33839  qtophaus  33841  pstmfval  33901  eulerpartlemgvv  34381  tgoldbachgtd  34667  primrootscoprmpow  42132  posbezout  42133  primrootscoprbij2  42136  primrootspoweq0  42139  aks6d1c2lem4  42160  aks6d1c2  42163  aks6d1c6lem3  42205  aks6d1c6lem5  42210  irrapxlem4  42858
  Copyright terms: Public domain W3C validator