MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.29vva Structured version   Visualization version   GIF version

Theorem r19.29vva 3198
Description: A commonly used pattern based on r19.29 3095, version with two restricted quantifiers. (Contributed by Thierry Arnoux, 26-Nov-2017.) (Proof shortened by Wolf Lammen, 4-Nov-2024.)
Hypotheses
Ref Expression
r19.29vva.1 ((((𝜑𝑥𝐴) ∧ 𝑦𝐵) ∧ 𝜓) → 𝜒)
r19.29vva.2 (𝜑 → ∃𝑥𝐴𝑦𝐵 𝜓)
Assertion
Ref Expression
r19.29vva (𝜑𝜒)
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝜒   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem r19.29vva
StepHypRef Expression
1 r19.29vva.1 . . 3 ((((𝜑𝑥𝐴) ∧ 𝑦𝐵) ∧ 𝜓) → 𝜒)
2 r19.29vva.2 . . 3 (𝜑 → ∃𝑥𝐴𝑦𝐵 𝜓)
31, 2reximddv2 3197 . 2 (𝜑 → ∃𝑥𝐴𝑦𝐵 𝜒)
4 idd 24 . . 3 ((𝑥𝐴𝑦𝐵) → (𝜒𝜒))
54rexlimivv 3180 . 2 (∃𝑥𝐴𝑦𝐵 𝜒𝜒)
63, 5syl 17 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wrex 3054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-rex 3055
This theorem is referenced by:  trust  24124  utoptop  24129  metustto  24448  restmetu  24465  tgbtwndiff  28440  legov  28519  legso  28533  tglnne  28562  tglndim0  28563  tglinethru  28570  tglnne0  28574  tglnpt2  28575  footexALT  28652  footex  28655  midex  28671  opptgdim2  28679  cgrane1  28746  cgrane2  28747  cgrane3  28748  cgrane4  28749  cgrahl1  28750  cgrahl2  28751  cgracgr  28752  cgratr  28757  cgrabtwn  28760  cgrahl  28761  dfcgra2  28764  sacgr  28765  acopyeu  28768  f1otrge  28806  suppovss  32611  elq2  32743  cyc3genpm  33116  cyc3conja  33121  archiabllem2c  33156  elrgspnsubrunlem2  33206  rloccring  33228  rloc1r  33230  fracfld  33265  ringlsmss1  33374  ringlsmss2  33375  mxidlprm  33448  qsdrngilem  33472  zringfrac  33532  lindsunlem  33627  dimkerim  33630  cos9thpiminplylem2  33780  txomap  33831  qtophaus  33833  pstmfval  33893  eulerpartlemgvv  34374  tgoldbachgtd  34660  primrootscoprmpow  42094  posbezout  42095  primrootscoprbij2  42098  primrootspoweq0  42101  aks6d1c2lem4  42122  aks6d1c2  42125  aks6d1c6lem3  42167  aks6d1c6lem5  42172  irrapxlem4  42820
  Copyright terms: Public domain W3C validator