![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.29vva | Structured version Visualization version GIF version |
Description: A commonly used pattern based on r19.29 3220, version with two restricted quantifiers. (Contributed by Thierry Arnoux, 26-Nov-2017.) |
Ref | Expression |
---|---|
r19.29vva.1 | ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) |
r19.29vva.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
Ref | Expression |
---|---|
r19.29vva | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.29vva.1 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 397 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝜓 → 𝜒)) |
3 | 2 | ralrimiva 3115 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑦 ∈ 𝐵 (𝜓 → 𝜒)) |
4 | 3 | ralrimiva 3115 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝜒)) |
5 | r19.29vva.2 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) | |
6 | 4, 5 | r19.29d2r 3228 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ((𝜓 → 𝜒) ∧ 𝜓)) |
7 | pm3.35 804 | . . . . 5 ⊢ ((𝜓 ∧ (𝜓 → 𝜒)) → 𝜒) | |
8 | 7 | ancoms 455 | . . . 4 ⊢ (((𝜓 → 𝜒) ∧ 𝜓) → 𝜒) |
9 | 8 | rexlimivw 3177 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 ((𝜓 → 𝜒) ∧ 𝜓) → 𝜒) |
10 | 9 | rexlimivw 3177 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ((𝜓 → 𝜒) ∧ 𝜓) → 𝜒) |
11 | 6, 10 | syl 17 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∈ wcel 2145 ∀wral 3061 ∃wrex 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 |
This theorem depends on definitions: df-bi 197 df-an 383 df-ex 1853 df-ral 3066 df-rex 3067 |
This theorem is referenced by: trust 22253 utoptop 22258 metustto 22578 restmetu 22595 tgbtwndiff 25622 legov 25701 legso 25715 tglnne 25744 tglndim0 25745 tglinethru 25752 tglnne0 25756 tglnpt2 25757 footex 25834 midex 25850 opptgdim2 25858 cgrane1 25925 cgrane2 25926 cgrane3 25927 cgrane4 25928 cgrahl1 25929 cgrahl2 25930 cgracgr 25931 cgratr 25936 cgrabtwn 25938 cgrahl 25939 dfcgra2 25942 sacgr 25943 acopyeu 25946 f1otrge 25973 archiabllem2c 30089 txomap 30241 qtophaus 30243 pstmfval 30279 eulerpartlemgvv 30778 tgoldbachgtd 31080 irrapxlem4 37915 |
Copyright terms: Public domain | W3C validator |