| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.29vva | Structured version Visualization version GIF version | ||
| Description: A commonly used pattern based on r19.29 3095, version with two restricted quantifiers. (Contributed by Thierry Arnoux, 26-Nov-2017.) (Proof shortened by Wolf Lammen, 4-Nov-2024.) |
| Ref | Expression |
|---|---|
| r19.29vva.1 | ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) |
| r19.29vva.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
| Ref | Expression |
|---|---|
| r19.29vva | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.29vva.1 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) | |
| 2 | r19.29vva.2 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) | |
| 3 | 1, 2 | reximddv2 3191 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) |
| 4 | idd 24 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜒 → 𝜒)) | |
| 5 | 4 | rexlimivv 3174 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒 → 𝜒) |
| 6 | 3, 5 | syl 17 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-rex 3057 |
| This theorem is referenced by: trust 24139 utoptop 24144 metustto 24463 restmetu 24480 tgbtwndiff 28479 legov 28558 legso 28572 tglnne 28601 tglndim0 28602 tglinethru 28609 tglnne0 28613 tglnpt2 28614 footexALT 28691 footex 28694 midex 28710 opptgdim2 28718 cgrane1 28785 cgrane2 28786 cgrane3 28787 cgrane4 28788 cgrahl1 28789 cgrahl2 28790 cgracgr 28791 cgratr 28796 cgrabtwn 28799 cgrahl 28800 dfcgra2 28803 sacgr 28804 acopyeu 28807 f1otrge 28845 suppovss 32654 elq2 32786 cyc3genpm 33113 cyc3conja 33118 archiabllem2c 33156 elrgspnsubrunlem2 33207 rloccring 33229 rloc1r 33231 fracfld 33266 ringlsmss1 33353 ringlsmss2 33354 mxidlprm 33427 qsdrngilem 33451 zringfrac 33511 lindsunlem 33629 dimkerim 33632 cos9thpiminplylem2 33788 txomap 33839 qtophaus 33841 pstmfval 33901 eulerpartlemgvv 34381 tgoldbachgtd 34667 primrootscoprmpow 42132 posbezout 42133 primrootscoprbij2 42136 primrootspoweq0 42139 aks6d1c2lem4 42160 aks6d1c2 42163 aks6d1c6lem3 42205 aks6d1c6lem5 42210 irrapxlem4 42858 |
| Copyright terms: Public domain | W3C validator |