| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.29vva | Structured version Visualization version GIF version | ||
| Description: A commonly used pattern based on r19.29 3094, version with two restricted quantifiers. (Contributed by Thierry Arnoux, 26-Nov-2017.) (Proof shortened by Wolf Lammen, 4-Nov-2024.) |
| Ref | Expression |
|---|---|
| r19.29vva.1 | ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) |
| r19.29vva.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
| Ref | Expression |
|---|---|
| r19.29vva | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.29vva.1 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) | |
| 2 | r19.29vva.2 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) | |
| 3 | 1, 2 | reximddv2 3196 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) |
| 4 | idd 24 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜒 → 𝜒)) | |
| 5 | 4 | rexlimivv 3179 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒 → 𝜒) |
| 6 | 3, 5 | syl 17 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: trust 24117 utoptop 24122 metustto 24441 restmetu 24458 tgbtwndiff 28433 legov 28512 legso 28526 tglnne 28555 tglndim0 28556 tglinethru 28563 tglnne0 28567 tglnpt2 28568 footexALT 28645 footex 28648 midex 28664 opptgdim2 28672 cgrane1 28739 cgrane2 28740 cgrane3 28741 cgrane4 28742 cgrahl1 28743 cgrahl2 28744 cgracgr 28745 cgratr 28750 cgrabtwn 28753 cgrahl 28754 dfcgra2 28757 sacgr 28758 acopyeu 28761 f1otrge 28799 suppovss 32604 elq2 32736 cyc3genpm 33109 cyc3conja 33114 archiabllem2c 33149 elrgspnsubrunlem2 33199 rloccring 33221 rloc1r 33223 fracfld 33258 ringlsmss1 33367 ringlsmss2 33368 mxidlprm 33441 qsdrngilem 33465 zringfrac 33525 lindsunlem 33620 dimkerim 33623 cos9thpiminplylem2 33773 txomap 33824 qtophaus 33826 pstmfval 33886 eulerpartlemgvv 34367 tgoldbachgtd 34653 primrootscoprmpow 42087 posbezout 42088 primrootscoprbij2 42091 primrootspoweq0 42094 aks6d1c2lem4 42115 aks6d1c2 42118 aks6d1c6lem3 42160 aks6d1c6lem5 42165 irrapxlem4 42813 |
| Copyright terms: Public domain | W3C validator |