Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.29vva | Structured version Visualization version GIF version |
Description: A commonly used pattern based on r19.29 3186, version with two restricted quantifiers. (Contributed by Thierry Arnoux, 26-Nov-2017.) (Proof shortened by Wolf Lammen, 4-Nov-2024.) |
Ref | Expression |
---|---|
r19.29vva.1 | ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) |
r19.29vva.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
Ref | Expression |
---|---|
r19.29vva | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.29vva.1 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) | |
2 | r19.29vva.2 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) | |
3 | 1, 2 | reximddv2 3209 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) |
4 | idd 24 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜒 → 𝜒)) | |
5 | 4 | rexlimivv 3223 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒 → 𝜒) |
6 | 3, 5 | syl 17 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2110 ∃wrex 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1787 df-ral 3071 df-rex 3072 |
This theorem is referenced by: trust 23392 utoptop 23397 metustto 23720 restmetu 23737 tgbtwndiff 26878 legov 26957 legso 26971 tglnne 27000 tglndim0 27001 tglinethru 27008 tglnne0 27012 tglnpt2 27013 footexALT 27090 footex 27093 midex 27109 opptgdim2 27117 cgrane1 27184 cgrane2 27185 cgrane3 27186 cgrane4 27187 cgrahl1 27188 cgrahl2 27189 cgracgr 27190 cgratr 27195 cgrabtwn 27198 cgrahl 27199 dfcgra2 27202 sacgr 27203 acopyeu 27206 f1otrge 27244 suppovss 31026 cyc3genpm 31428 cyc3conja 31433 archiabllem2c 31458 ringlsmss1 31593 ringlsmss2 31594 mxidlprm 31649 lindsunlem 31714 dimkerim 31717 txomap 31793 qtophaus 31795 pstmfval 31855 eulerpartlemgvv 32352 tgoldbachgtd 32651 irrapxlem4 40656 |
Copyright terms: Public domain | W3C validator |