Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2rexbiia | Structured version Visualization version GIF version |
Description: Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004.) |
Ref | Expression |
---|---|
2rexbiia.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
2rexbiia | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2rexbiia.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 ↔ 𝜓)) | |
2 | 1 | rexbidva 3207 | . 2 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓)) |
3 | 2 | rexbiia 3161 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∈ wcel 2114 ∃wrex 3055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1787 df-rex 3060 |
This theorem is referenced by: reu3op 6134 opreu2reurex 6136 cnref1o 12480 mndpfo 18063 wspthsnwspthsnon 27867 mdsymlem8 30358 xlt2addrd 30669 elunirnmbfm 31803 satfv0 32904 fmla0xp 32929 icoreelrnab 35181 rrx2xpref1o 45646 |
Copyright terms: Public domain | W3C validator |