MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r2al Structured version   Visualization version   GIF version

Theorem r2al 3201
Description: Double restricted universal quantification. (Contributed by NM, 19-Nov-1995.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Jan-2020.)
Assertion
Ref Expression
r2al (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → 𝜑))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem r2al
StepHypRef Expression
1 19.21v 1938 . 2 (∀𝑦(𝑥𝐴 → (𝑦𝐵𝜑)) ↔ (𝑥𝐴 → ∀𝑦(𝑦𝐵𝜑)))
21r2allem 3148 1 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535  wcel 2108  wral 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-ral 3068
This theorem is referenced by:  r2ex  3202  r3al  3203  ralcom  3295  nfra2w  3305  moel  3410  raliunxp  5864  codir  6152  qfto  6153  dfpo2  6327  fununi  6653  dff13  7292  mpo2eqb  7582  frpoins3xpg  8181  xpord2indlem  8188  tz7.48lem  8497  qliftfun  8860  zorn2lem4  10568  isirred2  20447  isdomn3  20737  cnmpt12  23696  cnmpt22  23703  dchrelbas3  27300  cvmlift2lem12  35282  dfso2  35717  r2alan  38205  inxpss  38267  inxpss3  38270  iscnrm3lem2  48614  joindm2  48648  meetdm2  48650
  Copyright terms: Public domain W3C validator