![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r2al | Structured version Visualization version GIF version |
Description: Double restricted universal quantification. (Contributed by NM, 19-Nov-1995.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Jan-2020.) |
Ref | Expression |
---|---|
r2al | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.21v 1938 | . 2 ⊢ (∀𝑦(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜑)) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐵 → 𝜑))) | |
2 | 1 | r2allem 3148 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 ∈ wcel 2108 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-ral 3068 |
This theorem is referenced by: r2ex 3202 r3al 3203 ralcom 3295 nfra2w 3305 moel 3410 raliunxp 5864 codir 6152 qfto 6153 dfpo2 6327 fununi 6653 dff13 7292 mpo2eqb 7582 frpoins3xpg 8181 xpord2indlem 8188 tz7.48lem 8497 qliftfun 8860 zorn2lem4 10568 isirred2 20447 isdomn3 20737 cnmpt12 23696 cnmpt22 23703 dchrelbas3 27300 cvmlift2lem12 35282 dfso2 35717 r2alan 38205 inxpss 38267 inxpss3 38270 iscnrm3lem2 48614 joindm2 48648 meetdm2 48650 |
Copyright terms: Public domain | W3C validator |