MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r2al Structured version   Visualization version   GIF version

Theorem r2al 3124
Description: Double restricted universal quantification. (Contributed by NM, 19-Nov-1995.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Jan-2020.)
Assertion
Ref Expression
r2al (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → 𝜑))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem r2al
StepHypRef Expression
1 19.21v 1943 . 2 (∀𝑦(𝑥𝐴 → (𝑦𝐵𝜑)) ↔ (𝑥𝐴 → ∀𝑦(𝑦𝐵𝜑)))
21r2allem 3123 1 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537  wcel 2108  wral 3063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-ral 3068
This theorem is referenced by:  r3al  3125  nfra2w  3151  r2ex  3231  ralcom  3280  raliunxp  5737  codir  6014  qfto  6015  dfpo2  6188  fununi  6493  dff13  7109  mpo2eqb  7384  tz7.48lem  8242  qliftfun  8549  zorn2lem4  10186  isirred2  19858  cnmpt12  22726  cnmpt22  22733  dchrelbas3  26291  cvmlift2lem12  33176  dfso2  33628  frpoins3xpg  33714  xpord2ind  33721  inxpss  36374  inxpss3  36376  isdomn3  40945  iscnrm3lem2  46116  joindm2  46150  meetdm2  46152
  Copyright terms: Public domain W3C validator