| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r2al | Structured version Visualization version GIF version | ||
| Description: Double restricted universal quantification. (Contributed by NM, 19-Nov-1995.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Jan-2020.) |
| Ref | Expression |
|---|---|
| r2al | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.21v 1939 | . 2 ⊢ (∀𝑦(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜑)) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐵 → 𝜑))) | |
| 2 | 1 | r2allem 3122 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∈ wcel 2109 ∀wral 3045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3046 |
| This theorem is referenced by: r2ex 3175 r3al 3176 ralcom 3266 nfra2w 3276 moel 3378 raliunxp 5806 codir 6096 qfto 6097 dfpo2 6272 fununi 6594 dff13 7232 mpo2eqb 7524 frpoins3xpg 8122 xpord2indlem 8129 tz7.48lem 8412 qliftfun 8778 zorn2lem4 10459 isirred2 20337 isdomn3 20631 cnmpt12 23561 cnmpt22 23568 dchrelbas3 27156 cvmlift2lem12 35308 dfso2 35749 r2alan 38245 inxpss 38306 inxpss3 38309 dfac5prim 44987 permac8prim 45011 iscnrm3lem2 48927 joindm2 48960 meetdm2 48962 |
| Copyright terms: Public domain | W3C validator |