![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r2al | Structured version Visualization version GIF version |
Description: Double restricted universal quantification. (Contributed by NM, 19-Nov-1995.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Jan-2020.) |
Ref | Expression |
---|---|
r2al | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.21v 1937 | . 2 ⊢ (∀𝑦(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜑)) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐵 → 𝜑))) | |
2 | 1 | r2allem 3140 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 ∈ wcel 2106 ∀wral 3059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-ral 3060 |
This theorem is referenced by: r2ex 3194 r3al 3195 ralcom 3287 nfra2w 3297 moel 3400 raliunxp 5853 codir 6143 qfto 6144 dfpo2 6318 fununi 6643 dff13 7275 mpo2eqb 7565 frpoins3xpg 8164 xpord2indlem 8171 tz7.48lem 8480 qliftfun 8841 zorn2lem4 10537 isirred2 20438 isdomn3 20732 cnmpt12 23691 cnmpt22 23698 dchrelbas3 27297 cvmlift2lem12 35299 dfso2 35735 r2alan 38231 inxpss 38293 inxpss3 38296 iscnrm3lem2 48731 joindm2 48765 meetdm2 48767 |
Copyright terms: Public domain | W3C validator |