Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r2al | Structured version Visualization version GIF version |
Description: Double restricted universal quantification. (Contributed by NM, 19-Nov-1995.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Jan-2020.) |
Ref | Expression |
---|---|
r2al | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.21v 1943 | . 2 ⊢ (∀𝑦(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜑)) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐵 → 𝜑))) | |
2 | 1 | r2allem 3123 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 ∈ wcel 2108 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-ral 3068 |
This theorem is referenced by: r3al 3125 nfra2w 3151 r2ex 3231 ralcom 3280 raliunxp 5737 codir 6014 qfto 6015 dfpo2 6188 fununi 6493 dff13 7109 mpo2eqb 7384 tz7.48lem 8242 qliftfun 8549 zorn2lem4 10186 isirred2 19858 cnmpt12 22726 cnmpt22 22733 dchrelbas3 26291 cvmlift2lem12 33176 dfso2 33628 frpoins3xpg 33714 xpord2ind 33721 inxpss 36374 inxpss3 36376 isdomn3 40945 iscnrm3lem2 46116 joindm2 46150 meetdm2 46152 |
Copyright terms: Public domain | W3C validator |