Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r2al | Structured version Visualization version GIF version |
Description: Double restricted universal quantification. (Contributed by NM, 19-Nov-1995.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Jan-2020.) |
Ref | Expression |
---|---|
r2al | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.21v 1942 | . 2 ⊢ (∀𝑦(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜑)) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐵 → 𝜑))) | |
2 | 1 | r2allem 3117 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 ∈ wcel 2106 ∀wral 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-ral 3069 |
This theorem is referenced by: r3al 3119 nfra2w 3154 ralcom 3166 r2ex 3232 raliunxp 5748 codir 6025 qfto 6026 dfpo2 6199 fununi 6509 dff13 7128 mpo2eqb 7406 tz7.48lem 8272 qliftfun 8591 zorn2lem4 10255 isirred2 19943 cnmpt12 22818 cnmpt22 22825 dchrelbas3 26386 cvmlift2lem12 33276 dfso2 33722 frpoins3xpg 33787 xpord2ind 33794 inxpss 36447 inxpss3 36449 isdomn3 41029 iscnrm3lem2 46228 joindm2 46262 meetdm2 46264 |
Copyright terms: Public domain | W3C validator |