| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r2al | Structured version Visualization version GIF version | ||
| Description: Double restricted universal quantification. (Contributed by NM, 19-Nov-1995.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Jan-2020.) |
| Ref | Expression |
|---|---|
| r2al | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.21v 1939 | . 2 ⊢ (∀𝑦(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜑)) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐵 → 𝜑))) | |
| 2 | 1 | r2allem 3117 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3045 |
| This theorem is referenced by: r2ex 3166 r3al 3167 ralcom 3257 nfra2w 3266 moel 3367 raliunxp 5786 codir 6073 qfto 6074 dfpo2 6248 fununi 6561 dff13 7195 mpo2eqb 7485 frpoins3xpg 8080 xpord2indlem 8087 tz7.48lem 8370 qliftfun 8736 zorn2lem4 10412 isirred2 20324 isdomn3 20618 cnmpt12 23570 cnmpt22 23577 dchrelbas3 27165 cvmlift2lem12 35286 dfso2 35727 r2alan 38223 inxpss 38284 inxpss3 38287 dfac5prim 44964 permac8prim 44988 iscnrm3lem2 48920 joindm2 48953 meetdm2 48955 |
| Copyright terms: Public domain | W3C validator |