![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r2al | Structured version Visualization version GIF version |
Description: Double restricted universal quantification. (Contributed by NM, 19-Nov-1995.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Jan-2020.) |
Ref | Expression |
---|---|
r2al | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.21v 1943 | . 2 ⊢ (∀𝑦(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜑)) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐵 → 𝜑))) | |
2 | 1 | r2allem 3143 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1540 ∈ wcel 2107 ∀wral 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-ral 3063 |
This theorem is referenced by: r2ex 3196 r3al 3197 ralcom 3287 nfra2w 3297 moel 3399 raliunxp 5840 codir 6122 qfto 6123 dfpo2 6296 fununi 6624 dff13 7254 mpo2eqb 7541 frpoins3xpg 8126 xpord2indlem 8133 tz7.48lem 8441 qliftfun 8796 zorn2lem4 10494 isirred2 20235 cnmpt12 23171 cnmpt22 23178 dchrelbas3 26741 cvmlift2lem12 34305 dfso2 34725 r2alan 37116 inxpss 37180 inxpss3 37183 isdomn3 41946 iscnrm3lem2 47567 joindm2 47601 meetdm2 47603 |
Copyright terms: Public domain | W3C validator |