| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r2al | Structured version Visualization version GIF version | ||
| Description: Double restricted universal quantification. (Contributed by NM, 19-Nov-1995.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Jan-2020.) |
| Ref | Expression |
|---|---|
| r2al | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.21v 1940 | . 2 ⊢ (∀𝑦(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜑)) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐵 → 𝜑))) | |
| 2 | 1 | r2allem 3120 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 ∈ wcel 2111 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-ral 3048 |
| This theorem is referenced by: r2ex 3169 r3al 3170 ralcom 3260 nfra2w 3268 moel 3366 raliunxp 5779 codir 6067 qfto 6068 dfpo2 6243 fununi 6556 dff13 7188 mpo2eqb 7478 frpoins3xpg 8070 xpord2indlem 8077 tz7.48lem 8360 qliftfun 8726 zorn2lem4 10387 isirred2 20337 isdomn3 20628 cnmpt12 23580 cnmpt22 23587 dchrelbas3 27174 cvmlift2lem12 35346 dfso2 35787 r2alan 38283 inxpss 38344 inxpss3 38347 dfac5prim 45022 permac8prim 45046 iscnrm3lem2 48965 joindm2 48998 meetdm2 49000 |
| Copyright terms: Public domain | W3C validator |