Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r2al | Structured version Visualization version GIF version |
Description: Double restricted universal quantification. (Contributed by NM, 19-Nov-1995.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Jan-2020.) |
Ref | Expression |
---|---|
r2al | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.21v 1945 | . 2 ⊢ (∀𝑦(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜑)) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐵 → 𝜑))) | |
2 | 1 | r2allem 3125 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1539 ∈ wcel 2109 ∀wral 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 df-ral 3070 |
This theorem is referenced by: r3al 3127 nfra2w 3153 r2ex 3233 ralcom 3282 raliunxp 5745 codir 6022 qfto 6023 dfpo2 6196 fununi 6505 dff13 7122 mpo2eqb 7397 tz7.48lem 8256 qliftfun 8565 zorn2lem4 10239 isirred2 19924 cnmpt12 22799 cnmpt22 22806 dchrelbas3 26367 cvmlift2lem12 33255 dfso2 33701 frpoins3xpg 33766 xpord2ind 33773 inxpss 36426 inxpss3 36428 isdomn3 41009 iscnrm3lem2 46180 joindm2 46214 meetdm2 46216 |
Copyright terms: Public domain | W3C validator |