MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r2al Structured version   Visualization version   GIF version

Theorem r2al 3118
Description: Double restricted universal quantification. (Contributed by NM, 19-Nov-1995.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Jan-2020.)
Assertion
Ref Expression
r2al (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → 𝜑))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem r2al
StepHypRef Expression
1 19.21v 1942 . 2 (∀𝑦(𝑥𝐴 → (𝑦𝐵𝜑)) ↔ (𝑥𝐴 → ∀𝑦(𝑦𝐵𝜑)))
21r2allem 3117 1 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537  wcel 2106  wral 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-ral 3069
This theorem is referenced by:  r3al  3119  nfra2w  3154  ralcom  3166  r2ex  3232  raliunxp  5748  codir  6025  qfto  6026  dfpo2  6199  fununi  6509  dff13  7128  mpo2eqb  7406  tz7.48lem  8272  qliftfun  8591  zorn2lem4  10255  isirred2  19943  cnmpt12  22818  cnmpt22  22825  dchrelbas3  26386  cvmlift2lem12  33276  dfso2  33722  frpoins3xpg  33787  xpord2ind  33794  inxpss  36447  inxpss3  36449  isdomn3  41029  iscnrm3lem2  46228  joindm2  46262  meetdm2  46264
  Copyright terms: Public domain W3C validator