| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r2al | Structured version Visualization version GIF version | ||
| Description: Double restricted universal quantification. (Contributed by NM, 19-Nov-1995.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Jan-2020.) |
| Ref | Expression |
|---|---|
| r2al | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.21v 1939 | . 2 ⊢ (∀𝑦(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜑)) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐵 → 𝜑))) | |
| 2 | 1 | r2allem 3121 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3045 |
| This theorem is referenced by: r2ex 3174 r3al 3175 ralcom 3265 nfra2w 3274 moel 3376 raliunxp 5803 codir 6093 qfto 6094 dfpo2 6269 fununi 6591 dff13 7229 mpo2eqb 7521 frpoins3xpg 8119 xpord2indlem 8126 tz7.48lem 8409 qliftfun 8775 zorn2lem4 10452 isirred2 20330 isdomn3 20624 cnmpt12 23554 cnmpt22 23561 dchrelbas3 27149 cvmlift2lem12 35301 dfso2 35742 r2alan 38238 inxpss 38299 inxpss3 38302 dfac5prim 44980 permac8prim 45004 iscnrm3lem2 48923 joindm2 48956 meetdm2 48958 |
| Copyright terms: Public domain | W3C validator |