| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r2al | Structured version Visualization version GIF version | ||
| Description: Double restricted universal quantification. (Contributed by NM, 19-Nov-1995.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Jan-2020.) |
| Ref | Expression |
|---|---|
| r2al | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.21v 1939 | . 2 ⊢ (∀𝑦(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜑)) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐵 → 𝜑))) | |
| 2 | 1 | r2allem 3129 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∈ wcel 2109 ∀wral 3052 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3053 |
| This theorem is referenced by: r2ex 3182 r3al 3183 ralcom 3274 nfra2w 3284 moel 3386 raliunxp 5824 codir 6114 qfto 6115 dfpo2 6290 fununi 6616 dff13 7252 mpo2eqb 7544 frpoins3xpg 8144 xpord2indlem 8151 tz7.48lem 8460 qliftfun 8821 zorn2lem4 10518 isirred2 20386 isdomn3 20680 cnmpt12 23610 cnmpt22 23617 dchrelbas3 27206 cvmlift2lem12 35341 dfso2 35777 r2alan 38272 inxpss 38334 inxpss3 38337 dfac5prim 44982 iscnrm3lem2 48876 joindm2 48909 meetdm2 48911 |
| Copyright terms: Public domain | W3C validator |