MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r2al Structured version   Visualization version   GIF version

Theorem r2al 3173
Description: Double restricted universal quantification. (Contributed by NM, 19-Nov-1995.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Jan-2020.)
Assertion
Ref Expression
r2al (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → 𝜑))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem r2al
StepHypRef Expression
1 19.21v 1939 . 2 (∀𝑦(𝑥𝐴 → (𝑦𝐵𝜑)) ↔ (𝑥𝐴 → ∀𝑦(𝑦𝐵𝜑)))
21r2allem 3121 1 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  wcel 2109  wral 3044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-ral 3045
This theorem is referenced by:  r2ex  3174  r3al  3175  ralcom  3265  nfra2w  3274  moel  3376  raliunxp  5803  codir  6093  qfto  6094  dfpo2  6269  fununi  6591  dff13  7229  mpo2eqb  7521  frpoins3xpg  8119  xpord2indlem  8126  tz7.48lem  8409  qliftfun  8775  zorn2lem4  10452  isirred2  20330  isdomn3  20624  cnmpt12  23554  cnmpt22  23561  dchrelbas3  27149  cvmlift2lem12  35301  dfso2  35742  r2alan  38238  inxpss  38299  inxpss3  38302  dfac5prim  44980  permac8prim  45004  iscnrm3lem2  48923  joindm2  48956  meetdm2  48958
  Copyright terms: Public domain W3C validator