MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r2al Structured version   Visualization version   GIF version

Theorem r2al 3195
Description: Double restricted universal quantification. (Contributed by NM, 19-Nov-1995.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Jan-2020.)
Assertion
Ref Expression
r2al (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → 𝜑))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem r2al
StepHypRef Expression
1 19.21v 1943 . 2 (∀𝑦(𝑥𝐴 → (𝑦𝐵𝜑)) ↔ (𝑥𝐴 → ∀𝑦(𝑦𝐵𝜑)))
21r2allem 3143 1 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wal 1540  wcel 2107  wral 3062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1783  df-ral 3063
This theorem is referenced by:  r2ex  3196  r3al  3197  ralcom  3287  nfra2w  3297  moel  3399  raliunxp  5840  codir  6122  qfto  6123  dfpo2  6296  fununi  6624  dff13  7254  mpo2eqb  7541  frpoins3xpg  8126  xpord2indlem  8133  tz7.48lem  8441  qliftfun  8796  zorn2lem4  10494  isirred2  20235  cnmpt12  23171  cnmpt22  23178  dchrelbas3  26741  cvmlift2lem12  34305  dfso2  34725  r2alan  37116  inxpss  37180  inxpss3  37183  isdomn3  41946  iscnrm3lem2  47567  joindm2  47601  meetdm2  47603
  Copyright terms: Public domain W3C validator