| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r2al | Structured version Visualization version GIF version | ||
| Description: Double restricted universal quantification. (Contributed by NM, 19-Nov-1995.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Jan-2020.) |
| Ref | Expression |
|---|---|
| r2al | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.21v 1940 | . 2 ⊢ (∀𝑦(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜑)) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐵 → 𝜑))) | |
| 2 | 1 | r2allem 3121 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 ∈ wcel 2113 ∀wral 3048 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-ral 3049 |
| This theorem is referenced by: r2ex 3170 r3al 3171 ralcom 3261 nfra2w 3269 moel 3367 raliunxp 5783 codir 6071 qfto 6072 dfpo2 6248 fununi 6561 dff13 7194 mpo2eqb 7484 frpoins3xpg 8076 xpord2indlem 8083 tz7.48lem 8366 qliftfun 8732 zorn2lem4 10397 isirred2 20341 isdomn3 20632 cnmpt12 23583 cnmpt22 23590 dchrelbas3 27177 cvmlift2lem12 35379 dfso2 35820 r2alan 38306 inxpss 38369 inxpss3 38372 dfac5prim 45107 permac8prim 45131 iscnrm3lem2 49059 joindm2 49092 meetdm2 49094 |
| Copyright terms: Public domain | W3C validator |