MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r2al Structured version   Visualization version   GIF version

Theorem r2al 3181
Description: Double restricted universal quantification. (Contributed by NM, 19-Nov-1995.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Jan-2020.)
Assertion
Ref Expression
r2al (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → 𝜑))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem r2al
StepHypRef Expression
1 19.21v 1939 . 2 (∀𝑦(𝑥𝐴 → (𝑦𝐵𝜑)) ↔ (𝑥𝐴 → ∀𝑦(𝑦𝐵𝜑)))
21r2allem 3129 1 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  wcel 2109  wral 3052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-ral 3053
This theorem is referenced by:  r2ex  3182  r3al  3183  ralcom  3274  nfra2w  3284  moel  3386  raliunxp  5824  codir  6114  qfto  6115  dfpo2  6290  fununi  6616  dff13  7252  mpo2eqb  7544  frpoins3xpg  8144  xpord2indlem  8151  tz7.48lem  8460  qliftfun  8821  zorn2lem4  10518  isirred2  20386  isdomn3  20680  cnmpt12  23610  cnmpt22  23617  dchrelbas3  27206  cvmlift2lem12  35341  dfso2  35777  r2alan  38272  inxpss  38334  inxpss3  38337  dfac5prim  44982  iscnrm3lem2  48876  joindm2  48909  meetdm2  48911
  Copyright terms: Public domain W3C validator