MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabbiiaOLD Structured version   Visualization version   GIF version

Theorem rabbiiaOLD 3438
Description: Obsolete version of rabbiia 3437 as of 12-Jan-2025. (Contributed by NM, 22-May-1999.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
rabbiia.1 (𝑥𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rabbiiaOLD {𝑥𝐴𝜑} = {𝑥𝐴𝜓}

Proof of Theorem rabbiiaOLD
StepHypRef Expression
1 rabbiia.1 . . . 4 (𝑥𝐴 → (𝜑𝜓))
21pm5.32i 576 . . 3 ((𝑥𝐴𝜑) ↔ (𝑥𝐴𝜓))
32abbii 2803 . 2 {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑥 ∣ (𝑥𝐴𝜓)}
4 df-rab 3434 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
5 df-rab 3434 . 2 {𝑥𝐴𝜓} = {𝑥 ∣ (𝑥𝐴𝜓)}
63, 4, 53eqtr4i 2771 1 {𝑥𝐴𝜑} = {𝑥𝐴𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  {cab 2710  {crab 3433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-rab 3434
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator