MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabbiiaOLD Structured version   Visualization version   GIF version

Theorem rabbiiaOLD 3425
Description: Obsolete version of rabbiia 3424 as of 12-Jan-2025. (Contributed by NM, 22-May-1999.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
rabbiia.1 (𝑥𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rabbiiaOLD {𝑥𝐴𝜑} = {𝑥𝐴𝜓}

Proof of Theorem rabbiiaOLD
StepHypRef Expression
1 rabbiia.1 . . . 4 (𝑥𝐴 → (𝜑𝜓))
21pm5.32i 574 . . 3 ((𝑥𝐴𝜑) ↔ (𝑥𝐴𝜓))
32abbii 2803 . 2 {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑥 ∣ (𝑥𝐴𝜓)}
4 df-rab 3421 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
5 df-rab 3421 . 2 {𝑥𝐴𝜓} = {𝑥 ∣ (𝑥𝐴𝜓)}
63, 4, 53eqtr4i 2769 1 {𝑥𝐴𝜑} = {𝑥𝐴𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2714  {crab 3420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-rab 3421
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator