Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abbii | Structured version Visualization version GIF version |
Description: Equivalent wff's yield equal class abstractions (inference form). (Contributed by NM, 26-May-1993.) Remove dependency on ax-10 2139, ax-11 2156, and ax-12 2173. (Revised by Steven Nguyen, 3-May-2023.) |
Ref | Expression |
---|---|
abbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
abbii | ⊢ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi1 2807 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) | |
2 | abbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
3 | 1, 2 | mpg 1801 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} |
Copyright terms: Public domain | W3C validator |