![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abbii | Structured version Visualization version GIF version |
Description: Equivalent wff's yield equal class abstractions (inference form). (Contributed by NM, 26-May-1993.) Remove dependency on ax-10 2080, ax-11 2094, and ax-12 2107. (Revised by Steven Nguyen, 3-May-2023.) |
Ref | Expression |
---|---|
abbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
abbii | ⊢ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi1 2844 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) | |
2 | abbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
3 | 1, 2 | mpg 1761 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1508 {cab 2760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-9 2060 ax-ext 2752 |
This theorem depends on definitions: df-bi 199 df-an 388 df-ex 1744 df-sb 2017 df-clab 2761 df-cleq 2773 |
This theorem is referenced by: rabrab 3320 rabswap 3325 rabbiia 3400 rabab 3446 csb2 3790 cbvcsb 3793 csbid 3796 csbco 3798 cbvreucsf 3824 unrab 4164 inrab 4165 inrab2 4166 difrab 4167 rabun2 4172 dfnul2 4183 dfnul3 4185 dfif2 4355 dfsn2ALT 4464 rabsnifsb 4537 tprot 4564 pw0 4624 pwpw0 4625 dfopif 4679 pwsn 4709 pwsnALT 4710 dfuni2 4719 unipr 4730 dfint2 4756 dfiunv2 4835 cbviun 4836 cbviin 4837 iunrab 4847 iunid 4855 viin 4859 iinuni 4891 cbvopab 5005 cbvopab1 5007 cbvopab2 5008 cbvopab1s 5009 cbvopab2v 5011 unopab 5012 zfrep4 5062 zfpair 5182 iunopab 5302 dfid3 5317 rabxp 5456 csbxp 5504 dfdm3 5612 dfrn2 5613 dfrn3 5614 dfdm4 5618 dfdmf 5619 csbdm 5620 dmun 5633 dmopab 5638 dmopabss 5639 dmopab3 5640 dfrnf 5668 rnopab 5674 rnmpt 5675 dfima2 5777 dfima3 5778 imadmrn 5785 imai 5787 args 5802 mptpreima 5936 dfiota2 6158 cbviota 6162 sb8iota 6164 mptfnf 6318 dffv4 6501 dfimafn2 6564 opabiotadm 6579 fndmin 6646 fnasrn 6736 elabrex 6833 abrexco 6834 dfoprab2 7037 cbvoprab2 7064 dmoprab 7077 rnoprab 7079 rnoprab2 7080 fnrnov 7143 abnex 7302 uniuni 7307 zfrep6 7474 fvresex 7479 abrexex2g 7483 abexssex 7489 abexex 7490 oprabrexex2 7497 dfopab2 7564 suppvalbr 7643 cnvimadfsn 7648 dfrecs3 7819 rdglem1 7861 snec 8166 pmex 8217 dfixp 8267 cbvixp 8282 marypha2lem4 8703 ruv 8867 tcsni 8985 scottexs 9116 scott0s 9117 kardex 9123 cardf2 9172 dfac3 9347 infmap2 9444 cf0 9477 cfval2 9486 isf33lem 9592 dffin1-5 9614 axdc2lem 9674 addcompr 10247 mulcompr 10249 dfnn3 11461 hashf1lem2 13633 prprrab 13648 cshwsexa 14054 trclun 14241 shftdm 14297 hashbc0 16203 lubfval 17458 glbfval 17471 oduglb 17619 odulub 17621 symgbas0 18295 pmtrprfvalrn 18389 efgval2 18620 dvdsrval 19130 dfrhm2 19204 toponsspwpw 21249 tgval2 21283 tgdif0 21319 xkobval 21913 ustfn 22528 ustn0 22547 2lgslem1b 25685 2sq 25723 rusgrprc 27090 rgrprcx 27092 wwlksnfi 27420 wwlksnfiOLD 27421 clwwlkvbij 27656 clwwlkvbijOLD 27657 dfconngr1 27732 isconngr 27733 isconngr1 27734 nmopnegi 29538 nmop0 29559 nmfn0 29560 sa-abvi 30016 dmrab 30054 abrexdomjm 30061 abrexexd 30063 cbviunf 30093 dfimafnf 30160 ofpreima 30189 cnvoprabOLD 30232 maprnin 30243 fpwrelmapffslem 30244 hasheuni 31020 sigaex 31045 sigaval 31046 isrnsigaOLD 31048 eulerpartlemt 31306 bnj1146 31743 bnj1400 31787 bnj882 31877 bnj893 31879 derang0 32041 subfaclefac 32048 fmla0 32232 fmlasuc0 32234 fmla1 32237 dfon2lem7 32594 dfon2 32597 domep 32598 dfrdg2 32601 poseq 32656 soseq 32657 madeval2 32851 dfiota3 32945 fvline 33166 ellines 33174 bj-dfifc2 33470 bj-df-ifc 33471 bj-rababw 33730 bj-inrab 33780 bj-taginv 33856 bj-nuliotaALT 33902 rnmptsn 34098 dissneqlem 34103 dissneq 34104 dffinxpf 34147 wl-dfrabsb 34342 rabiun 34346 ismblfin 34414 volsupnfl 34418 areacirclem5 34467 abrexdom 34487 sdclem1 34500 sdc 34501 rncnvepres 35045 qsresid 35066 rnxrn 35131 rncossdmcoss 35180 dfcoeleqvrels 35341 psubspset 36365 pmapglb 36391 polval2N 36527 psubclsetN 36557 tendoset 37380 iunsn 38604 imaopab 38605 prjspeclsp 38710 eq0rabdioph 38810 rexrabdioph 38828 eldioph4b 38845 hbtlem6 39166 dfid7 39376 clcnvlem 39387 dfrtrcl5 39393 relopabVD 40694 elabrexg 40762 dffo3f 40899 dfaiota2 42727 dfaimafn2 42806 sprid 43039 setrec2 44200 |
Copyright terms: Public domain | W3C validator |