| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abbii | Structured version Visualization version GIF version | ||
| Description: Equivalent wff's yield equal class abstractions (inference form). (Contributed by NM, 26-May-1993.) Remove dependency on ax-10 2142, ax-11 2158, and ax-12 2178. (Revised by Steven Nguyen, 3-May-2023.) |
| Ref | Expression |
|---|---|
| abbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| abbii | ⊢ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abbi 2801 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) | |
| 2 | abbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 1, 2 | mpg 1797 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} |
| Copyright terms: Public domain | W3C validator |