Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabbii | Structured version Visualization version GIF version |
Description: Equivalent wff's correspond to equal restricted class abstractions. Inference form of rabbidv 3413. (Contributed by Peter Mazsa, 1-Nov-2019.) |
Ref | Expression |
---|---|
rabbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
rabbii | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
3 | 2 | rabbiia 3405 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
Copyright terms: Public domain | W3C validator |