| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabbiia | Structured version Visualization version GIF version | ||
| Description: Equivalent formulas yield equal restricted class abstractions (inference form). (Contributed by NM, 22-May-1999.) (Proof shortened by Wolf Lammen, 12-Jan-2025.) |
| Ref | Expression |
|---|---|
| rabbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rabbiia | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabbiia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | pm5.32i 574 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
| 3 | 2 | rabbia2 3439 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 {crab 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-rab 3437 |
| This theorem is referenced by: rabbii 3442 fninfp 7194 fndifnfp 7196 nlimon 7872 dfom2 7889 rankval2 9858 ioopos 13464 prmreclem4 16957 acsfn1 17704 acsfn2 17706 logtayl 26702 ftalem3 27118 ppiub 27248 isuvtx 29412 vtxdginducedm1 29561 finsumvtxdg2size 29568 rgrusgrprc 29607 clwwlknclwwlkdif 29998 numclwwlkqhash 30394 ubthlem1 30889 xpinpreima 33905 xpinpreima2 33906 eulerpartgbij 34374 topdifinfeq 37351 rabimbieq 38252 resuppsinopn 42393 rmydioph 43026 rmxdioph 43028 expdiophlem2 43034 expdioph 43035 alephiso3 43572 fsovrfovd 44022 k0004val0 44167 nzss 44336 hashnzfz 44339 fourierdlem90 46211 fourierdlem96 46217 fourierdlem97 46218 fourierdlem98 46219 fourierdlem99 46220 fourierdlem100 46221 fourierdlem109 46230 fourierdlem110 46231 fourierdlem112 46233 fourierdlem113 46234 sssmf 46753 dfodd6 47624 dfeven4 47625 dfeven2 47636 dfodd3 47637 dfeven3 47645 dfodd4 47646 dfodd5 47647 |
| Copyright terms: Public domain | W3C validator |