Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabbiia | Structured version Visualization version GIF version |
Description: Equivalent formulas yield equal restricted class abstractions (inference form). (Contributed by NM, 22-May-1999.) |
Ref | Expression |
---|---|
rabbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rabbiia | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbiia.1 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | pm5.32i 575 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
3 | 2 | abbii 2808 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} |
4 | df-rab 3073 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
5 | df-rab 3073 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} | |
6 | 3, 4, 5 | 3eqtr4i 2776 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 {crab 3068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-rab 3073 |
This theorem is referenced by: rabbii 3408 fninfp 7046 fndifnfp 7048 nlimon 7698 dfom2 7714 rankval2 9576 ioopos 13156 prmreclem4 16620 acsfn1 17370 acsfn2 17372 logtayl 25815 ftalem3 26224 ppiub 26352 isuvtx 27762 vtxdginducedm1 27910 finsumvtxdg2size 27917 rgrusgrprc 27956 clwwlknclwwlkdif 28343 numclwwlkqhash 28739 ubthlem1 29232 xpinpreima 31856 xpinpreima2 31857 eulerpartgbij 32339 topdifinfeq 35521 rabimbieq 36391 rmydioph 40836 rmxdioph 40838 expdiophlem2 40844 expdioph 40845 alephiso3 41166 fsovrfovd 41617 k0004val0 41764 nzss 41935 hashnzfz 41938 fourierdlem90 43737 fourierdlem96 43743 fourierdlem97 43744 fourierdlem98 43745 fourierdlem99 43746 fourierdlem100 43747 fourierdlem109 43756 fourierdlem110 43757 fourierdlem112 43759 fourierdlem113 43760 sssmf 44274 dfodd6 45089 dfeven4 45090 dfeven2 45101 dfodd3 45102 dfeven3 45110 dfodd4 45111 dfodd5 45112 |
Copyright terms: Public domain | W3C validator |