| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabbiia | Structured version Visualization version GIF version | ||
| Description: Equivalent formulas yield equal restricted class abstractions (inference form). (Contributed by NM, 22-May-1999.) (Proof shortened by Wolf Lammen, 12-Jan-2025.) |
| Ref | Expression |
|---|---|
| rabbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rabbiia | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabbiia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | pm5.32i 574 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
| 3 | 2 | rabbia2 3398 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 {crab 3395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-rab 3396 |
| This theorem is referenced by: rabbii 3400 fninfp 7108 fndifnfp 7110 nlimon 7781 dfom2 7798 rankval2 9711 ioopos 13324 prmreclem4 16831 acsfn1 17567 acsfn2 17569 logtayl 26596 ftalem3 27012 ppiub 27142 isuvtx 29373 vtxdginducedm1 29522 finsumvtxdg2size 29529 rgrusgrprc 29568 clwwlknclwwlkdif 29959 numclwwlkqhash 30355 ubthlem1 30850 psrbasfsupp 33572 xpinpreima 33919 xpinpreima2 33920 eulerpartgbij 34385 rankval2b 35110 fineqvnttrclse 35144 topdifinfeq 37394 rabimbieq 38298 resuppsinopn 42466 rmydioph 43117 rmxdioph 43119 expdiophlem2 43125 expdioph 43126 alephiso3 43662 fsovrfovd 44112 k0004val0 44257 nzss 44420 hashnzfz 44423 fourierdlem90 46304 fourierdlem96 46310 fourierdlem97 46311 fourierdlem98 46312 fourierdlem99 46313 fourierdlem100 46314 fourierdlem109 46323 fourierdlem110 46324 fourierdlem112 46326 fourierdlem113 46327 sssmf 46846 dfodd6 47747 dfeven4 47748 dfeven2 47759 dfodd3 47760 dfeven3 47768 dfodd4 47769 dfodd5 47770 |
| Copyright terms: Public domain | W3C validator |