| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabbiia | Structured version Visualization version GIF version | ||
| Description: Equivalent formulas yield equal restricted class abstractions (inference form). (Contributed by NM, 22-May-1999.) (Proof shortened by Wolf Lammen, 12-Jan-2025.) |
| Ref | Expression |
|---|---|
| rabbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rabbiia | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabbiia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | pm5.32i 574 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
| 3 | 2 | rabbia2 3423 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {crab 3420 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-rab 3421 |
| This theorem is referenced by: rabbii 3426 fninfp 7171 fndifnfp 7173 nlimon 7851 dfom2 7868 rankval2 9837 ioopos 13446 prmreclem4 16944 acsfn1 17678 acsfn2 17680 logtayl 26626 ftalem3 27042 ppiub 27172 isuvtx 29379 vtxdginducedm1 29528 finsumvtxdg2size 29535 rgrusgrprc 29574 clwwlknclwwlkdif 29965 numclwwlkqhash 30361 ubthlem1 30856 xpinpreima 33942 xpinpreima2 33943 eulerpartgbij 34409 topdifinfeq 37373 rabimbieq 38274 resuppsinopn 42373 rmydioph 43005 rmxdioph 43007 expdiophlem2 43013 expdioph 43014 alephiso3 43550 fsovrfovd 44000 k0004val0 44145 nzss 44308 hashnzfz 44311 fourierdlem90 46192 fourierdlem96 46198 fourierdlem97 46199 fourierdlem98 46200 fourierdlem99 46201 fourierdlem100 46202 fourierdlem109 46211 fourierdlem110 46212 fourierdlem112 46214 fourierdlem113 46215 sssmf 46734 dfodd6 47618 dfeven4 47619 dfeven2 47630 dfodd3 47631 dfeven3 47639 dfodd4 47640 dfodd5 47641 |
| Copyright terms: Public domain | W3C validator |