![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabbiia | Structured version Visualization version GIF version |
Description: Equivalent formulas yield equal restricted class abstractions (inference form). (Contributed by NM, 22-May-1999.) (Proof shortened by Wolf Lammen, 12-Jan-2025.) |
Ref | Expression |
---|---|
rabbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rabbiia | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbiia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | pm5.32i 576 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
3 | 2 | rabbia2 3436 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2107 {crab 3433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-rab 3434 |
This theorem is referenced by: rabbii 3439 fninfp 7172 fndifnfp 7174 nlimon 7840 dfom2 7857 rankval2 9813 ioopos 13401 prmreclem4 16852 acsfn1 17605 acsfn2 17607 logtayl 26168 ftalem3 26579 ppiub 26707 isuvtx 28652 vtxdginducedm1 28800 finsumvtxdg2size 28807 rgrusgrprc 28846 clwwlknclwwlkdif 29232 numclwwlkqhash 29628 ubthlem1 30123 xpinpreima 32886 xpinpreima2 32887 eulerpartgbij 33371 topdifinfeq 36231 rabimbieq 37119 rmydioph 41753 rmxdioph 41755 expdiophlem2 41761 expdioph 41762 alephiso3 42310 fsovrfovd 42760 k0004val0 42905 nzss 43076 hashnzfz 43079 fourierdlem90 44912 fourierdlem96 44918 fourierdlem97 44919 fourierdlem98 44920 fourierdlem99 44921 fourierdlem100 44922 fourierdlem109 44931 fourierdlem110 44932 fourierdlem112 44934 fourierdlem113 44935 sssmf 45454 dfodd6 46305 dfeven4 46306 dfeven2 46317 dfodd3 46318 dfeven3 46326 dfodd4 46327 dfodd5 46328 |
Copyright terms: Public domain | W3C validator |