| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabbiia | Structured version Visualization version GIF version | ||
| Description: Equivalent formulas yield equal restricted class abstractions (inference form). (Contributed by NM, 22-May-1999.) (Proof shortened by Wolf Lammen, 12-Jan-2025.) |
| Ref | Expression |
|---|---|
| rabbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rabbiia | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabbiia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | pm5.32i 574 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
| 3 | 2 | rabbia2 3405 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {crab 3402 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-rab 3403 |
| This theorem is referenced by: rabbii 3408 fninfp 7130 fndifnfp 7132 nlimon 7807 dfom2 7824 rankval2 9747 ioopos 13361 prmreclem4 16866 acsfn1 17602 acsfn2 17604 logtayl 26602 ftalem3 27018 ppiub 27148 isuvtx 29375 vtxdginducedm1 29524 finsumvtxdg2size 29531 rgrusgrprc 29570 clwwlknclwwlkdif 29958 numclwwlkqhash 30354 ubthlem1 30849 xpinpreima 33889 xpinpreima2 33890 eulerpartgbij 34356 topdifinfeq 37331 rabimbieq 38233 resuppsinopn 42344 rmydioph 42996 rmxdioph 42998 expdiophlem2 43004 expdioph 43005 alephiso3 43541 fsovrfovd 43991 k0004val0 44136 nzss 44299 hashnzfz 44302 fourierdlem90 46187 fourierdlem96 46193 fourierdlem97 46194 fourierdlem98 46195 fourierdlem99 46196 fourierdlem100 46197 fourierdlem109 46206 fourierdlem110 46207 fourierdlem112 46209 fourierdlem113 46210 sssmf 46729 dfodd6 47631 dfeven4 47632 dfeven2 47643 dfodd3 47644 dfeven3 47652 dfodd4 47653 dfodd5 47654 |
| Copyright terms: Public domain | W3C validator |