| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabbiia | Structured version Visualization version GIF version | ||
| Description: Equivalent formulas yield equal restricted class abstractions (inference form). (Contributed by NM, 22-May-1999.) (Proof shortened by Wolf Lammen, 12-Jan-2025.) |
| Ref | Expression |
|---|---|
| rabbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rabbiia | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabbiia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | pm5.32i 574 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
| 3 | 2 | rabbia2 3411 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {crab 3408 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-rab 3409 |
| This theorem is referenced by: rabbii 3414 fninfp 7151 fndifnfp 7153 nlimon 7830 dfom2 7847 rankval2 9778 ioopos 13392 prmreclem4 16897 acsfn1 17629 acsfn2 17631 logtayl 26576 ftalem3 26992 ppiub 27122 isuvtx 29329 vtxdginducedm1 29478 finsumvtxdg2size 29485 rgrusgrprc 29524 clwwlknclwwlkdif 29915 numclwwlkqhash 30311 ubthlem1 30806 xpinpreima 33903 xpinpreima2 33904 eulerpartgbij 34370 topdifinfeq 37345 rabimbieq 38247 resuppsinopn 42358 rmydioph 43010 rmxdioph 43012 expdiophlem2 43018 expdioph 43019 alephiso3 43555 fsovrfovd 44005 k0004val0 44150 nzss 44313 hashnzfz 44316 fourierdlem90 46201 fourierdlem96 46207 fourierdlem97 46208 fourierdlem98 46209 fourierdlem99 46210 fourierdlem100 46211 fourierdlem109 46220 fourierdlem110 46221 fourierdlem112 46223 fourierdlem113 46224 sssmf 46743 dfodd6 47642 dfeven4 47643 dfeven2 47654 dfodd3 47655 dfeven3 47663 dfodd4 47664 dfodd5 47665 |
| Copyright terms: Public domain | W3C validator |