![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabbiia | Structured version Visualization version GIF version |
Description: Equivalent formulas yield equal restricted class abstractions (inference form). (Contributed by NM, 22-May-1999.) (Proof shortened by Wolf Lammen, 12-Jan-2025.) |
Ref | Expression |
---|---|
rabbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rabbiia | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbiia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | pm5.32i 575 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
3 | 2 | rabbia2 3435 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 {crab 3432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-rab 3433 |
This theorem is referenced by: rabbii 3438 fninfp 7171 fndifnfp 7173 nlimon 7839 dfom2 7856 rankval2 9812 ioopos 13400 prmreclem4 16851 acsfn1 17604 acsfn2 17606 logtayl 26167 ftalem3 26576 ppiub 26704 isuvtx 28649 vtxdginducedm1 28797 finsumvtxdg2size 28804 rgrusgrprc 28843 clwwlknclwwlkdif 29229 numclwwlkqhash 29625 ubthlem1 30118 xpinpreima 32881 xpinpreima2 32882 eulerpartgbij 33366 topdifinfeq 36226 rabimbieq 37114 rmydioph 41743 rmxdioph 41745 expdiophlem2 41751 expdioph 41752 alephiso3 42300 fsovrfovd 42750 k0004val0 42895 nzss 43066 hashnzfz 43069 fourierdlem90 44902 fourierdlem96 44908 fourierdlem97 44909 fourierdlem98 44910 fourierdlem99 44911 fourierdlem100 44912 fourierdlem109 44921 fourierdlem110 44922 fourierdlem112 44924 fourierdlem113 44925 sssmf 45444 dfodd6 46295 dfeven4 46296 dfeven2 46307 dfodd3 46308 dfeven3 46316 dfodd4 46317 dfodd5 46318 |
Copyright terms: Public domain | W3C validator |