| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabbiia | Structured version Visualization version GIF version | ||
| Description: Equivalent formulas yield equal restricted class abstractions (inference form). (Contributed by NM, 22-May-1999.) (Proof shortened by Wolf Lammen, 12-Jan-2025.) |
| Ref | Expression |
|---|---|
| rabbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rabbiia | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabbiia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | pm5.32i 574 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
| 3 | 2 | rabbia2 3408 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {crab 3405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-rab 3406 |
| This theorem is referenced by: rabbii 3411 fninfp 7148 fndifnfp 7150 nlimon 7827 dfom2 7844 rankval2 9771 ioopos 13385 prmreclem4 16890 acsfn1 17622 acsfn2 17624 logtayl 26569 ftalem3 26985 ppiub 27115 isuvtx 29322 vtxdginducedm1 29471 finsumvtxdg2size 29478 rgrusgrprc 29517 clwwlknclwwlkdif 29908 numclwwlkqhash 30304 ubthlem1 30799 xpinpreima 33896 xpinpreima2 33897 eulerpartgbij 34363 topdifinfeq 37338 rabimbieq 38240 resuppsinopn 42351 rmydioph 43003 rmxdioph 43005 expdiophlem2 43011 expdioph 43012 alephiso3 43548 fsovrfovd 43998 k0004val0 44143 nzss 44306 hashnzfz 44309 fourierdlem90 46194 fourierdlem96 46200 fourierdlem97 46201 fourierdlem98 46202 fourierdlem99 46203 fourierdlem100 46204 fourierdlem109 46213 fourierdlem110 46214 fourierdlem112 46216 fourierdlem113 46217 sssmf 46736 dfodd6 47638 dfeven4 47639 dfeven2 47650 dfodd3 47651 dfeven3 47659 dfodd4 47660 dfodd5 47661 |
| Copyright terms: Public domain | W3C validator |