Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabbiia | Structured version Visualization version GIF version |
Description: Equivalent formulas yield equal restricted class abstractions (inference form). (Contributed by NM, 22-May-1999.) |
Ref | Expression |
---|---|
rabbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rabbiia | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbiia.1 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | pm5.32i 574 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
3 | 2 | abbii 2809 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} |
4 | df-rab 3072 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
5 | df-rab 3072 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} | |
6 | 3, 4, 5 | 3eqtr4i 2776 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cab 2715 {crab 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-rab 3072 |
This theorem is referenced by: rabbii 3397 fninfp 7028 fndifnfp 7030 nlimon 7673 dfom2 7689 rankval2 9507 ioopos 13085 prmreclem4 16548 acsfn1 17287 acsfn2 17289 logtayl 25720 ftalem3 26129 ppiub 26257 isuvtx 27665 vtxdginducedm1 27813 finsumvtxdg2size 27820 rgrusgrprc 27859 clwwlknclwwlkdif 28244 numclwwlkqhash 28640 ubthlem1 29133 xpinpreima 31758 xpinpreima2 31759 eulerpartgbij 32239 topdifinfeq 35448 rabimbieq 36318 rmydioph 40752 rmxdioph 40754 expdiophlem2 40760 expdioph 40761 alephiso3 41055 fsovrfovd 41506 k0004val0 41653 nzss 41824 hashnzfz 41827 fourierdlem90 43627 fourierdlem96 43633 fourierdlem97 43634 fourierdlem98 43635 fourierdlem99 43636 fourierdlem100 43637 fourierdlem109 43646 fourierdlem110 43647 fourierdlem112 43649 fourierdlem113 43650 sssmf 44161 dfodd6 44977 dfeven4 44978 dfeven2 44989 dfodd3 44990 dfeven3 44998 dfodd4 44999 dfodd5 45000 |
Copyright terms: Public domain | W3C validator |