![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabbiia | Structured version Visualization version GIF version |
Description: Equivalent formulas yield equal restricted class abstractions (inference form). (Contributed by NM, 22-May-1999.) (Proof shortened by Wolf Lammen, 12-Jan-2025.) |
Ref | Expression |
---|---|
rabbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rabbiia | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbiia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | pm5.32i 574 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
3 | 2 | rabbia2 3430 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1534 ∈ wcel 2099 {crab 3427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-rab 3428 |
This theorem is referenced by: rabbii 3433 fninfp 7177 fndifnfp 7179 nlimon 7849 dfom2 7866 rankval2 9833 ioopos 13425 prmreclem4 16879 acsfn1 17632 acsfn2 17634 logtayl 26581 ftalem3 26994 ppiub 27124 isuvtx 29195 vtxdginducedm1 29344 finsumvtxdg2size 29351 rgrusgrprc 29390 clwwlknclwwlkdif 29776 numclwwlkqhash 30172 ubthlem1 30667 xpinpreima 33443 xpinpreima2 33444 eulerpartgbij 33928 topdifinfeq 36765 rabimbieq 37658 rmydioph 42357 rmxdioph 42359 expdiophlem2 42365 expdioph 42366 alephiso3 42912 fsovrfovd 43362 k0004val0 43507 nzss 43677 hashnzfz 43680 fourierdlem90 45507 fourierdlem96 45513 fourierdlem97 45514 fourierdlem98 45515 fourierdlem99 45516 fourierdlem100 45517 fourierdlem109 45526 fourierdlem110 45527 fourierdlem112 45529 fourierdlem113 45530 sssmf 46049 dfodd6 46900 dfeven4 46901 dfeven2 46912 dfodd3 46913 dfeven3 46921 dfodd4 46922 dfodd5 46923 |
Copyright terms: Public domain | W3C validator |