![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabbiia | Structured version Visualization version GIF version |
Description: Equivalent formulas yield equal restricted class abstractions (inference form). (Contributed by NM, 22-May-1999.) (Proof shortened by Wolf Lammen, 12-Jan-2025.) |
Ref | Expression |
---|---|
rabbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rabbiia | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbiia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | pm5.32i 576 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
3 | 2 | rabbia2 3436 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2107 {crab 3433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-rab 3434 |
This theorem is referenced by: rabbii 3439 fninfp 7172 fndifnfp 7174 nlimon 7840 dfom2 7857 rankval2 9813 ioopos 13401 prmreclem4 16852 acsfn1 17605 acsfn2 17607 logtayl 26168 ftalem3 26579 ppiub 26707 isuvtx 28683 vtxdginducedm1 28831 finsumvtxdg2size 28838 rgrusgrprc 28877 clwwlknclwwlkdif 29263 numclwwlkqhash 29659 ubthlem1 30154 xpinpreima 32917 xpinpreima2 32918 eulerpartgbij 33402 topdifinfeq 36279 rabimbieq 37167 rmydioph 41801 rmxdioph 41803 expdiophlem2 41809 expdioph 41810 alephiso3 42358 fsovrfovd 42808 k0004val0 42953 nzss 43124 hashnzfz 43127 fourierdlem90 44960 fourierdlem96 44966 fourierdlem97 44967 fourierdlem98 44968 fourierdlem99 44969 fourierdlem100 44970 fourierdlem109 44979 fourierdlem110 44980 fourierdlem112 44982 fourierdlem113 44983 sssmf 45502 dfodd6 46353 dfeven4 46354 dfeven2 46365 dfodd3 46366 dfeven3 46374 dfodd4 46375 dfodd5 46376 |
Copyright terms: Public domain | W3C validator |