![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabbiia | Structured version Visualization version GIF version |
Description: Equivalent formulas yield equal restricted class abstractions (inference form). (Contributed by NM, 22-May-1999.) (Proof shortened by Wolf Lammen, 12-Jan-2025.) |
Ref | Expression |
---|---|
rabbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rabbiia | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbiia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | pm5.32i 574 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
3 | 2 | rabbia2 3436 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 {crab 3433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-rab 3434 |
This theorem is referenced by: rabbii 3439 fninfp 7194 fndifnfp 7196 nlimon 7872 dfom2 7889 rankval2 9856 ioopos 13461 prmreclem4 16953 acsfn1 17706 acsfn2 17708 logtayl 26717 ftalem3 27133 ppiub 27263 isuvtx 29427 vtxdginducedm1 29576 finsumvtxdg2size 29583 rgrusgrprc 29622 clwwlknclwwlkdif 30008 numclwwlkqhash 30404 ubthlem1 30899 xpinpreima 33867 xpinpreima2 33868 eulerpartgbij 34354 topdifinfeq 37333 rabimbieq 38233 rmydioph 43003 rmxdioph 43005 expdiophlem2 43011 expdioph 43012 alephiso3 43549 fsovrfovd 43999 k0004val0 44144 nzss 44313 hashnzfz 44316 fourierdlem90 46152 fourierdlem96 46158 fourierdlem97 46159 fourierdlem98 46160 fourierdlem99 46161 fourierdlem100 46162 fourierdlem109 46171 fourierdlem110 46172 fourierdlem112 46174 fourierdlem113 46175 sssmf 46694 dfodd6 47562 dfeven4 47563 dfeven2 47574 dfodd3 47575 dfeven3 47583 dfodd4 47584 dfodd5 47585 |
Copyright terms: Public domain | W3C validator |