Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabbiia | Structured version Visualization version GIF version |
Description: Equivalent formulas yield equal restricted class abstractions (inference form). (Contributed by NM, 22-May-1999.) |
Ref | Expression |
---|---|
rabbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rabbiia | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbiia.1 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | pm5.32i 578 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
3 | 2 | abbii 2824 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} |
4 | df-rab 3080 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
5 | df-rab 3080 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} | |
6 | 3, 4, 5 | 3eqtr4i 2792 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1539 ∈ wcel 2112 {cab 2736 {crab 3075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-9 2122 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1783 df-sb 2071 df-clab 2737 df-cleq 2751 df-rab 3080 |
This theorem is referenced by: rabbii 3386 fninfp 6934 fndifnfp 6936 nlimon 7572 dfom2 7588 rankval2 9294 ioopos 12870 prmreclem4 16325 acsfn1 17005 acsfn2 17007 logtayl 25365 ftalem3 25774 ppiub 25902 isuvtx 27299 vtxdginducedm1 27447 finsumvtxdg2size 27454 rgrusgrprc 27493 clwwlknclwwlkdif 27878 numclwwlkqhash 28274 ubthlem1 28767 xpinpreima 31391 xpinpreima2 31392 eulerpartgbij 31872 topdifinfeq 35083 rabimbieq 35989 rmydioph 40374 rmxdioph 40376 expdiophlem2 40382 expdioph 40383 alephiso3 40677 fsovrfovd 41129 k0004val0 41276 nzss 41440 hashnzfz 41443 fourierdlem90 43250 fourierdlem96 43256 fourierdlem97 43257 fourierdlem98 43258 fourierdlem99 43259 fourierdlem100 43260 fourierdlem109 43269 fourierdlem110 43270 fourierdlem112 43272 fourierdlem113 43273 sssmf 43784 dfodd6 44582 dfeven4 44583 dfeven2 44594 dfodd3 44595 dfeven3 44603 dfodd4 44604 dfodd5 44605 |
Copyright terms: Public domain | W3C validator |