| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabbiia | Structured version Visualization version GIF version | ||
| Description: Equivalent formulas yield equal restricted class abstractions (inference form). (Contributed by NM, 22-May-1999.) (Proof shortened by Wolf Lammen, 12-Jan-2025.) |
| Ref | Expression |
|---|---|
| rabbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rabbiia | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabbiia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | pm5.32i 574 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
| 3 | 2 | rabbia2 3397 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {crab 3394 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-rab 3395 |
| This theorem is referenced by: rabbii 3400 fninfp 7110 fndifnfp 7112 nlimon 7784 dfom2 7801 rankval2 9714 ioopos 13327 prmreclem4 16831 acsfn1 17567 acsfn2 17569 logtayl 26567 ftalem3 26983 ppiub 27113 isuvtx 29340 vtxdginducedm1 29489 finsumvtxdg2size 29496 rgrusgrprc 29535 clwwlknclwwlkdif 29923 numclwwlkqhash 30319 ubthlem1 30814 psrbasfsupp 33545 xpinpreima 33879 xpinpreima2 33880 eulerpartgbij 34346 fineqvnttrclse 35083 topdifinfeq 37334 rabimbieq 38236 resuppsinopn 42346 rmydioph 42997 rmxdioph 42999 expdiophlem2 43005 expdioph 43006 alephiso3 43542 fsovrfovd 43992 k0004val0 44137 nzss 44300 hashnzfz 44303 fourierdlem90 46187 fourierdlem96 46193 fourierdlem97 46194 fourierdlem98 46195 fourierdlem99 46196 fourierdlem100 46197 fourierdlem109 46206 fourierdlem110 46207 fourierdlem112 46209 fourierdlem113 46210 sssmf 46729 dfodd6 47631 dfeven4 47632 dfeven2 47643 dfodd3 47644 dfeven3 47652 dfodd4 47653 dfodd5 47654 |
| Copyright terms: Public domain | W3C validator |