![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabbiia | Structured version Visualization version GIF version |
Description: Equivalent formulas yield equal restricted class abstractions (inference form). (Contributed by NM, 22-May-1999.) (Proof shortened by Wolf Lammen, 12-Jan-2025.) |
Ref | Expression |
---|---|
rabbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rabbiia | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbiia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | pm5.32i 574 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
3 | 2 | rabbia2 3446 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 {crab 3443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-rab 3444 |
This theorem is referenced by: rabbii 3449 fninfp 7208 fndifnfp 7210 nlimon 7888 dfom2 7905 rankval2 9887 ioopos 13484 prmreclem4 16966 acsfn1 17719 acsfn2 17721 logtayl 26720 ftalem3 27136 ppiub 27266 isuvtx 29430 vtxdginducedm1 29579 finsumvtxdg2size 29586 rgrusgrprc 29625 clwwlknclwwlkdif 30011 numclwwlkqhash 30407 ubthlem1 30902 xpinpreima 33852 xpinpreima2 33853 eulerpartgbij 34337 topdifinfeq 37316 rabimbieq 38207 rmydioph 42971 rmxdioph 42973 expdiophlem2 42979 expdioph 42980 alephiso3 43521 fsovrfovd 43971 k0004val0 44116 nzss 44286 hashnzfz 44289 fourierdlem90 46117 fourierdlem96 46123 fourierdlem97 46124 fourierdlem98 46125 fourierdlem99 46126 fourierdlem100 46127 fourierdlem109 46136 fourierdlem110 46137 fourierdlem112 46139 fourierdlem113 46140 sssmf 46659 dfodd6 47511 dfeven4 47512 dfeven2 47523 dfodd3 47524 dfeven3 47532 dfodd4 47533 dfodd5 47534 |
Copyright terms: Public domain | W3C validator |