MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabswap Structured version   Visualization version   GIF version

Theorem rabswap 3413
Description: Swap with a membership relation in a restricted class abstraction. (Contributed by NM, 4-Jul-2005.)
Assertion
Ref Expression
rabswap {𝑥𝐴𝑥𝐵} = {𝑥𝐵𝑥𝐴}

Proof of Theorem rabswap
StepHypRef Expression
1 ancom 460 . 2 ((𝑥𝐴𝑥𝐵) ↔ (𝑥𝐵𝑥𝐴))
21rabbia2 3401 1 {𝑥𝐴𝑥𝐵} = {𝑥𝐵𝑥𝐴}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  {crab 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-rab 3072
This theorem is referenced by:  incom  4131
  Copyright terms: Public domain W3C validator