| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabbia2 | Structured version Visualization version GIF version | ||
| Description: Equivalent wff's yield equal restricted class abstractions. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| rabbia2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| rabbia2 | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabbia2.1 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒)) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) |
| 3 | 2 | rabbidva2 3396 | . 2 ⊢ (⊤ → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
| 4 | 3 | mptru 1547 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 {crab 3394 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-rab 3395 |
| This theorem is referenced by: rabbiia 3398 rabswap 3404 rabeqi 3408 rabrabi 3414 f1ossf1o 7062 finsumvtxdg2ssteplem3 29493 clwlknf1oclwwlkn 30028 clwwlknon2x 30047 numclwwlkovh 30317 ballotlem2 34457 smflim 46758 smflim2 46787 smflimsuplem1 46801 smflimsup 46809 sprvalpwn0 47467 |
| Copyright terms: Public domain | W3C validator |