![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabbia2 | Structured version Visualization version GIF version |
Description: Equivalent wff's yield equal restricted class abstractions. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
rabbia2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒)) |
Ref | Expression |
---|---|
rabbia2 | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbia2.1 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒)) | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) |
3 | 2 | rabbidva2 3368 | . 2 ⊢ (⊤ → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
4 | 3 | mptru 1661 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 385 = wceq 1653 ⊤wtru 1654 ∈ wcel 2157 {crab 3091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2775 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2784 df-cleq 2790 df-clel 2793 df-rab 3096 |
This theorem is referenced by: f1ossf1o 6620 finsumvtxdg2ssteplem3 26788 clwlknf1oclwwlkn 27407 clwlknf1oclwwlknOLD 27409 clwwlknon2x 27433 numclwwlkovh 27737 smflim 41718 smflim2 41745 smflimsuplem1 41759 smflimsup 41767 sprvalpwn0 42519 |
Copyright terms: Public domain | W3C validator |