MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabbia2 Structured version   Visualization version   GIF version

Theorem rabbia2 3398
Description: Equivalent wff's yield equal restricted class abstractions. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
rabbia2.1 ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒))
Assertion
Ref Expression
rabbia2 {𝑥𝐴𝜓} = {𝑥𝐵𝜒}

Proof of Theorem rabbia2
StepHypRef Expression
1 rabbia2.1 . . . 4 ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒))
21a1i 11 . . 3 (⊤ → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒)))
32rabbidva2 3397 . 2 (⊤ → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
43mptru 1548 1 {𝑥𝐴𝜓} = {𝑥𝐵𝜒}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wtru 1542  wcel 2111  {crab 3395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-rab 3396
This theorem is referenced by:  rabbiia  3399  rabswap  3404  rabeqi  3408  rabrabi  3414  f1ossf1o  7061  finsumvtxdg2ssteplem3  29526  clwlknf1oclwwlkn  30064  clwwlknon2x  30083  numclwwlkovh  30353  ballotlem2  34502  fineqvnttrclse  35144  smflim  46823  smflim2  46852  smflimsuplem1  46866  smflimsup  46874  sprvalpwn0  47522
  Copyright terms: Public domain W3C validator