MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabbia2 Structured version   Visualization version   GIF version

Theorem rabbia2 3408
Description: Equivalent wff's yield equal restricted class abstractions. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
rabbia2.1 ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒))
Assertion
Ref Expression
rabbia2 {𝑥𝐴𝜓} = {𝑥𝐵𝜒}

Proof of Theorem rabbia2
StepHypRef Expression
1 rabbia2.1 . . . 4 ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒))
21a1i 11 . . 3 (⊤ → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒)))
32rabbidva2 3407 . 2 (⊤ → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
43mptru 1547 1 {𝑥𝐴𝜓} = {𝑥𝐵𝜒}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2109  {crab 3405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-rab 3406
This theorem is referenced by:  rabbiia  3409  rabswap  3415  rabeqi  3419  rabrabi  3425  f1ossf1o  7100  finsumvtxdg2ssteplem3  29475  clwlknf1oclwwlkn  30013  clwwlknon2x  30032  numclwwlkovh  30302  ballotlem2  34480  smflim  46775  smflim2  46804  smflimsuplem1  46818  smflimsup  46826  sprvalpwn0  47484
  Copyright terms: Public domain W3C validator