MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabbia2 Structured version   Visualization version   GIF version

Theorem rabbia2 3446
Description: Equivalent wff's yield equal restricted class abstractions. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
rabbia2.1 ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒))
Assertion
Ref Expression
rabbia2 {𝑥𝐴𝜓} = {𝑥𝐵𝜒}

Proof of Theorem rabbia2
StepHypRef Expression
1 rabbia2.1 . . . 4 ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒))
21a1i 11 . . 3 (⊤ → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒)))
32rabbidva2 3445 . 2 (⊤ → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
43mptru 1544 1 {𝑥𝐴𝜓} = {𝑥𝐵𝜒}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wtru 1538  wcel 2108  {crab 3443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-rab 3444
This theorem is referenced by:  rabbiia  3447  rabswap  3453  rabeqi  3457  rabrabi  3463  f1ossf1o  7162  finsumvtxdg2ssteplem3  29583  clwlknf1oclwwlkn  30116  clwwlknon2x  30135  numclwwlkovh  30405  ballotlem2  34453  smflim  46698  smflim2  46727  smflimsuplem1  46741  smflimsup  46749  sprvalpwn0  47357
  Copyright terms: Public domain W3C validator