Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabbia2 | Structured version Visualization version GIF version |
Description: Equivalent wff's yield equal restricted class abstractions. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
rabbia2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒)) |
Ref | Expression |
---|---|
rabbia2 | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbia2.1 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒)) | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) |
3 | 2 | rabbidva2 3389 | . 2 ⊢ (⊤ → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
4 | 3 | mptru 1546 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 400 = wceq 1539 ⊤wtru 1540 ∈ wcel 2112 {crab 3075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-9 2122 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-tru 1542 df-ex 1783 df-sb 2071 df-clab 2737 df-cleq 2751 df-rab 3080 |
This theorem is referenced by: rabeqi 3395 rabswap 3402 f1ossf1o 6879 finsumvtxdg2ssteplem3 27426 clwlknf1oclwwlkn 27958 clwwlknon2x 27977 numclwwlkovh 28247 ballotlem2 31964 smflim 43766 smflim2 43793 smflimsuplem1 43807 smflimsup 43815 sprvalpwn0 44358 |
Copyright terms: Public domain | W3C validator |