MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabbia2 Structured version   Visualization version   GIF version

Theorem rabbia2 3401
Description: Equivalent wff's yield equal restricted class abstractions. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
rabbia2.1 ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒))
Assertion
Ref Expression
rabbia2 {𝑥𝐴𝜓} = {𝑥𝐵𝜒}

Proof of Theorem rabbia2
StepHypRef Expression
1 rabbia2.1 . . . 4 ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒))
21a1i 11 . . 3 (⊤ → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒)))
32rabbidva2 3400 . 2 (⊤ → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
43mptru 1546 1 {𝑥𝐴𝜓} = {𝑥𝐵𝜒}
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wtru 1540  wcel 2108  {crab 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-rab 3072
This theorem is referenced by:  rabeqi  3406  rabswap  3413  rabrabi  3417  f1ossf1o  6982  finsumvtxdg2ssteplem3  27817  clwlknf1oclwwlkn  28349  clwwlknon2x  28368  numclwwlkovh  28638  ballotlem2  32355  smflim  44199  smflim2  44226  smflimsuplem1  44240  smflimsup  44248  sprvalpwn0  44823
  Copyright terms: Public domain W3C validator