| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabbia2 | Structured version Visualization version GIF version | ||
| Description: Equivalent wff's yield equal restricted class abstractions. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| rabbia2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| rabbia2 | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabbia2.1 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒)) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) |
| 3 | 2 | rabbidva2 3397 | . 2 ⊢ (⊤ → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
| 4 | 3 | mptru 1548 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ⊤wtru 1542 ∈ wcel 2111 {crab 3395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-rab 3396 |
| This theorem is referenced by: rabbiia 3399 rabswap 3404 rabeqi 3408 rabrabi 3414 f1ossf1o 7061 finsumvtxdg2ssteplem3 29526 clwlknf1oclwwlkn 30064 clwwlknon2x 30083 numclwwlkovh 30353 ballotlem2 34502 fineqvnttrclse 35144 smflim 46823 smflim2 46852 smflimsuplem1 46866 smflimsup 46874 sprvalpwn0 47522 |
| Copyright terms: Public domain | W3C validator |