MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabbieq Structured version   Visualization version   GIF version

Theorem rabbieq 3417
Description: Equivalent wff's correspond to restricted class abstractions which are equal with the same class. (Contributed by Peter Mazsa, 8-Jul-2019.)
Hypotheses
Ref Expression
rabbieq.1 𝐵 = {𝑥𝐴𝜑}
rabbieq.2 (𝜑𝜓)
Assertion
Ref Expression
rabbieq 𝐵 = {𝑥𝐴𝜓}

Proof of Theorem rabbieq
StepHypRef Expression
1 rabbieq.1 . 2 𝐵 = {𝑥𝐴𝜑}
2 rabbieq.2 . . 3 (𝜑𝜓)
32rabbii 3414 . 2 {𝑥𝐴𝜑} = {𝑥𝐴𝜓}
41, 3eqtri 2753 1 𝐵 = {𝑥𝐴𝜓}
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  {crab 3408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-rab 3409
This theorem is referenced by:  dfdif3  4083  1arithufd  33526  dfrefrels3  38512  dfcnvrefrels3  38527  dfsymrels3  38544  refsymrels3  38564  dftrrels3  38574  dfeqvrels3  38587  dfdisjs3  38709  dfdisjs4  38710  isubgr0uhgr  47877
  Copyright terms: Public domain W3C validator