Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabbieq Structured version   Visualization version   GIF version

Theorem rabbieq 36369
Description: Equivalent wff's correspond to restricted class abstractions which are equal with the same class. (Contributed by Peter Mazsa, 8-Jul-2019.)
Hypotheses
Ref Expression
rabbieq.1 𝐵 = {𝑥𝐴𝜑}
rabbieq.2 (𝜑𝜓)
Assertion
Ref Expression
rabbieq 𝐵 = {𝑥𝐴𝜓}

Proof of Theorem rabbieq
StepHypRef Expression
1 rabbieq.1 . 2 𝐵 = {𝑥𝐴𝜑}
2 rabbieq.2 . . 3 (𝜑𝜓)
32rabbii 3405 . 2 {𝑥𝐴𝜑} = {𝑥𝐴𝜓}
41, 3eqtri 2767 1 𝐵 = {𝑥𝐴𝜓}
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  {crab 3069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-rab 3074
This theorem is referenced by:  dfrefrels3  36611  dfcnvrefrels3  36624  dfsymrels3  36639  refsymrels3  36659  dftrrels3  36669  dfeqvrels3  36681  dfdisjs3  36800  dfdisjs4  36801
  Copyright terms: Public domain W3C validator