Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rabbieq | Structured version Visualization version GIF version |
Description: Equivalent wff's correspond to restricted class abstractions which are equal with the same class. (Contributed by Peter Mazsa, 8-Jul-2019.) |
Ref | Expression |
---|---|
rabbieq.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} |
rabbieq.2 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
rabbieq | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbieq.1 | . 2 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} | |
2 | rabbieq.2 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | rabbii 3405 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
4 | 1, 3 | eqtri 2767 | 1 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 {crab 3069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-rab 3074 |
This theorem is referenced by: dfrefrels3 36611 dfcnvrefrels3 36624 dfsymrels3 36639 refsymrels3 36659 dftrrels3 36669 dfeqvrels3 36681 dfdisjs3 36800 dfdisjs4 36801 |
Copyright terms: Public domain | W3C validator |