Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabbieq Structured version   Visualization version   GIF version

Theorem rabbieq 37118
Description: Equivalent wff's correspond to restricted class abstractions which are equal with the same class. (Contributed by Peter Mazsa, 8-Jul-2019.)
Hypotheses
Ref Expression
rabbieq.1 𝐵 = {𝑥𝐴𝜑}
rabbieq.2 (𝜑𝜓)
Assertion
Ref Expression
rabbieq 𝐵 = {𝑥𝐴𝜓}

Proof of Theorem rabbieq
StepHypRef Expression
1 rabbieq.1 . 2 𝐵 = {𝑥𝐴𝜑}
2 rabbieq.2 . . 3 (𝜑𝜓)
32rabbii 3439 . 2 {𝑥𝐴𝜑} = {𝑥𝐴𝜓}
41, 3eqtri 2761 1 𝐵 = {𝑥𝐴𝜓}
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1542  {crab 3433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-rab 3434
This theorem is referenced by:  dfrefrels3  37384  dfcnvrefrels3  37399  dfsymrels3  37416  refsymrels3  37436  dftrrels3  37446  dfeqvrels3  37459  dfdisjs3  37580  dfdisjs4  37581
  Copyright terms: Public domain W3C validator