| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabbieq | Structured version Visualization version GIF version | ||
| Description: Equivalent wff's correspond to restricted class abstractions which are equal with the same class. (Contributed by Peter Mazsa, 8-Jul-2019.) |
| Ref | Expression |
|---|---|
| rabbieq.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} |
| rabbieq.2 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| rabbieq | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabbieq.1 | . 2 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} | |
| 2 | rabbieq.2 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | rabbii 3400 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
| 4 | 1, 3 | eqtri 2754 | 1 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 {crab 3395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-rab 3396 |
| This theorem is referenced by: dfdif3 4064 1arithufd 33513 dfrefrels3 38605 dfcnvrefrels3 38620 dfsymrels3 38637 refsymrels3 38661 dftrrels3 38671 dfeqvrels3 38684 dfdisjs3 38807 dfdisjs4 38808 isubgr0uhgr 47972 grlimedgclnbgr 48094 |
| Copyright terms: Public domain | W3C validator |