MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabbieq Structured version   Visualization version   GIF version

Theorem rabbieq 3403
Description: Equivalent wff's correspond to restricted class abstractions which are equal with the same class. (Contributed by Peter Mazsa, 8-Jul-2019.)
Hypotheses
Ref Expression
rabbieq.1 𝐵 = {𝑥𝐴𝜑}
rabbieq.2 (𝜑𝜓)
Assertion
Ref Expression
rabbieq 𝐵 = {𝑥𝐴𝜓}

Proof of Theorem rabbieq
StepHypRef Expression
1 rabbieq.1 . 2 𝐵 = {𝑥𝐴𝜑}
2 rabbieq.2 . . 3 (𝜑𝜓)
32rabbii 3400 . 2 {𝑥𝐴𝜑} = {𝑥𝐴𝜓}
41, 3eqtri 2754 1 𝐵 = {𝑥𝐴𝜓}
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  {crab 3395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-rab 3396
This theorem is referenced by:  dfdif3  4064  1arithufd  33513  dfrefrels3  38605  dfcnvrefrels3  38620  dfsymrels3  38637  refsymrels3  38661  dftrrels3  38671  dfeqvrels3  38684  dfdisjs3  38807  dfdisjs4  38808  isubgr0uhgr  47972  grlimedgclnbgr  48094
  Copyright terms: Public domain W3C validator