![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rabbieq | Structured version Visualization version GIF version |
Description: Equivalent wff's correspond to restricted class abstractions which are equal with the same class. (Contributed by Peter Mazsa, 8-Jul-2019.) |
Ref | Expression |
---|---|
rabbieq.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} |
rabbieq.2 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
rabbieq | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbieq.1 | . 2 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} | |
2 | rabbieq.2 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | rabbii 3399 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
4 | 1, 3 | eqtri 2850 | 1 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1658 {crab 3122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-ext 2804 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2813 df-cleq 2819 df-clel 2822 df-rab 3127 |
This theorem is referenced by: dfrefrels3 34813 dfcnvrefrels3 34826 dfsymrels3 34841 refsymrels3 34861 dftrrels3 34871 dfeqvrels3 34882 |
Copyright terms: Public domain | W3C validator |