Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralanid | Structured version Visualization version GIF version |
Description: Cancellation law for restricted universal quantification. (Contributed by Peter Mazsa, 30-Dec-2018.) (Proof shortened by Wolf Lammen, 29-Jun-2023.) |
Ref | Expression |
---|---|
ralanid | ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibar 528 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
2 | 1 | bicomd 222 | . 2 ⊢ (𝑥 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝜑)) |
3 | 2 | ralbiia 3089 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ral 3068 |
This theorem is referenced by: idinxpssinxp2 36380 |
Copyright terms: Public domain | W3C validator |