|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ralanid | Structured version Visualization version GIF version | ||
| Description: Cancellation law for restricted universal quantification. (Contributed by Peter Mazsa, 30-Dec-2018.) (Proof shortened by Wolf Lammen, 29-Jun-2023.) | 
| Ref | Expression | 
|---|---|
| ralanid | ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∀𝑥 ∈ 𝐴 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ibar 528 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
| 2 | 1 | bicomd 223 | . 2 ⊢ (𝑥 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝜑)) | 
| 3 | 2 | ralbiia 3090 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∀𝑥 ∈ 𝐴 𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2107 ∀wral 3060 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3061 | 
| This theorem is referenced by: idinxpssinxp2 38320 | 
| Copyright terms: Public domain | W3C validator |