Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexanid | Structured version Visualization version GIF version |
Description: Cancellation law for restricted existential quantification. (Contributed by Peter Mazsa, 24-May-2018.) (Proof shortened by Wolf Lammen, 8-Jul-2023.) |
Ref | Expression |
---|---|
rexanid | ⊢ (∃𝑥 ∈ 𝐴 (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibar 528 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
2 | 1 | bicomd 222 | . 2 ⊢ (𝑥 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝜑)) |
3 | 2 | rexbiia 3176 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-rex 3069 |
This theorem is referenced by: sn-axrep5v 40113 |
Copyright terms: Public domain | W3C validator |