| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexanid | Structured version Visualization version GIF version | ||
| Description: Cancellation law for restricted existential quantification. (Contributed by Peter Mazsa, 24-May-2018.) (Proof shortened by Wolf Lammen, 8-Jul-2023.) |
| Ref | Expression |
|---|---|
| rexanid | ⊢ (∃𝑥 ∈ 𝐴 (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibar 528 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
| 2 | 1 | bicomd 223 | . 2 ⊢ (𝑥 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝜑)) |
| 3 | 2 | rexbiia 3092 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∃wrex 3070 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3071 |
| This theorem is referenced by: sn-axrep5v 42255 |
| Copyright terms: Public domain | W3C validator |