Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idinxpssinxp2 Structured version   Visualization version   GIF version

Theorem idinxpssinxp2 36453
Description: Identity intersection with a square Cartesian product in subclass relation with an intersection with the same Cartesian product. (Contributed by Peter Mazsa, 4-Mar-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
idinxpssinxp2 (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ∀𝑥𝐴 𝑥𝑅𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅

Proof of Theorem idinxpssinxp2
StepHypRef Expression
1 idinxpresid 5955 . . . 4 ( I ∩ (𝐴 × 𝐴)) = ( I ↾ 𝐴)
21sseq1i 3949 . . 3 (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ( I ↾ 𝐴) ⊆ (𝑅 ∩ (𝐴 × 𝐴)))
3 idrefALT 6018 . . 3 (( I ↾ 𝐴) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ∀𝑥𝐴 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥)
4 brinxp2 5664 . . . . 5 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ↔ ((𝑥𝐴𝑥𝐴) ∧ 𝑥𝑅𝑥))
5 pm4.24 564 . . . . . 6 (𝑥𝐴 ↔ (𝑥𝐴𝑥𝐴))
65anbi1i 624 . . . . 5 ((𝑥𝐴𝑥𝑅𝑥) ↔ ((𝑥𝐴𝑥𝐴) ∧ 𝑥𝑅𝑥))
74, 6bitr4i 277 . . . 4 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ↔ (𝑥𝐴𝑥𝑅𝑥))
87ralbii 3092 . . 3 (∀𝑥𝐴 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ↔ ∀𝑥𝐴 (𝑥𝐴𝑥𝑅𝑥))
92, 3, 83bitri 297 . 2 (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ∀𝑥𝐴 (𝑥𝐴𝑥𝑅𝑥))
10 ralanid 3094 . 2 (∀𝑥𝐴 (𝑥𝐴𝑥𝑅𝑥) ↔ ∀𝑥𝐴 𝑥𝑅𝑥)
119, 10bitri 274 1 (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ∀𝑥𝐴 𝑥𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wcel 2106  wral 3064  cin 3886  wss 3887   class class class wbr 5074   I cid 5488   × cxp 5587  cres 5591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-res 5601
This theorem is referenced by:  idinxpssinxp3  36454  idinxpssinxp4  36455
  Copyright terms: Public domain W3C validator