![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > idinxpssinxp2 | Structured version Visualization version GIF version |
Description: Identity intersection with a square Cartesian product in subclass relation with an intersection with the same Cartesian product. (Contributed by Peter Mazsa, 4-Mar-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
idinxpssinxp2 | ⊢ (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idinxpres 5670 | . . . 4 ⊢ ( I ∩ (𝐴 × 𝐴)) = ( I ↾ 𝐴) | |
2 | 1 | sseq1i 3823 | . . 3 ⊢ (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ( I ↾ 𝐴) ⊆ (𝑅 ∩ (𝐴 × 𝐴))) |
3 | idrefALT 5724 | . . 3 ⊢ (( I ↾ 𝐴) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ∀𝑥 ∈ 𝐴 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥) | |
4 | brinxp2 5381 | . . . . 5 ⊢ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥𝑅𝑥)) | |
5 | pm4.24 560 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) | |
6 | 5 | anbi1i 618 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑥) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥𝑅𝑥)) |
7 | 4, 6 | bitr4i 270 | . . . 4 ⊢ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑥)) |
8 | 7 | ralbii 3159 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑥)) |
9 | 2, 3, 8 | 3bitri 289 | . 2 ⊢ (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑥)) |
10 | ralanid 3097 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑥) ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) | |
11 | 9, 10 | bitri 267 | 1 ⊢ (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 385 ∈ wcel 2157 ∀wral 3087 ∩ cin 3766 ⊆ wss 3767 class class class wbr 4841 I cid 5217 × cxp 5308 ↾ cres 5312 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2375 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pr 5095 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-op 4373 df-br 4842 df-opab 4904 df-id 5218 df-xp 5316 df-rel 5317 df-res 5322 |
This theorem is referenced by: idinxpssinxp3 34575 idinxpssinxp4 34576 |
Copyright terms: Public domain | W3C validator |