Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > idinxpssinxp2 | Structured version Visualization version GIF version |
Description: Identity intersection with a square Cartesian product in subclass relation with an intersection with the same Cartesian product. (Contributed by Peter Mazsa, 4-Mar-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
idinxpssinxp2 | ⊢ (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idinxpresid 5953 | . . . 4 ⊢ ( I ∩ (𝐴 × 𝐴)) = ( I ↾ 𝐴) | |
2 | 1 | sseq1i 3954 | . . 3 ⊢ (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ( I ↾ 𝐴) ⊆ (𝑅 ∩ (𝐴 × 𝐴))) |
3 | idrefALT 6016 | . . 3 ⊢ (( I ↾ 𝐴) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ∀𝑥 ∈ 𝐴 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥) | |
4 | brinxp2 5664 | . . . . 5 ⊢ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥𝑅𝑥)) | |
5 | pm4.24 564 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) | |
6 | 5 | anbi1i 624 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑥) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥𝑅𝑥)) |
7 | 4, 6 | bitr4i 277 | . . . 4 ⊢ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑥)) |
8 | 7 | ralbii 3093 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑥)) |
9 | 2, 3, 8 | 3bitri 297 | . 2 ⊢ (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑥)) |
10 | ralanid 3096 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑥) ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) | |
11 | 9, 10 | bitri 274 | 1 ⊢ (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∈ wcel 2110 ∀wral 3066 ∩ cin 3891 ⊆ wss 3892 class class class wbr 5079 I cid 5488 × cxp 5587 ↾ cres 5591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-11 2158 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-id 5489 df-xp 5595 df-rel 5596 df-res 5601 |
This theorem is referenced by: idinxpssinxp3 36442 idinxpssinxp4 36443 |
Copyright terms: Public domain | W3C validator |