Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idinxpssinxp2 Structured version   Visualization version   GIF version

Theorem idinxpssinxp2 35590
Description: Identity intersection with a square Cartesian product in subclass relation with an intersection with the same Cartesian product. (Contributed by Peter Mazsa, 4-Mar-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
idinxpssinxp2 (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ∀𝑥𝐴 𝑥𝑅𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅

Proof of Theorem idinxpssinxp2
StepHypRef Expression
1 idinxpresid 5915 . . . 4 ( I ∩ (𝐴 × 𝐴)) = ( I ↾ 𝐴)
21sseq1i 3995 . . 3 (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ( I ↾ 𝐴) ⊆ (𝑅 ∩ (𝐴 × 𝐴)))
3 idrefALT 5973 . . 3 (( I ↾ 𝐴) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ∀𝑥𝐴 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥)
4 brinxp2 5629 . . . . 5 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ↔ ((𝑥𝐴𝑥𝐴) ∧ 𝑥𝑅𝑥))
5 pm4.24 566 . . . . . 6 (𝑥𝐴 ↔ (𝑥𝐴𝑥𝐴))
65anbi1i 625 . . . . 5 ((𝑥𝐴𝑥𝑅𝑥) ↔ ((𝑥𝐴𝑥𝐴) ∧ 𝑥𝑅𝑥))
74, 6bitr4i 280 . . . 4 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ↔ (𝑥𝐴𝑥𝑅𝑥))
87ralbii 3165 . . 3 (∀𝑥𝐴 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ↔ ∀𝑥𝐴 (𝑥𝐴𝑥𝑅𝑥))
92, 3, 83bitri 299 . 2 (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ∀𝑥𝐴 (𝑥𝐴𝑥𝑅𝑥))
10 ralanid 3168 . 2 (∀𝑥𝐴 (𝑥𝐴𝑥𝑅𝑥) ↔ ∀𝑥𝐴 𝑥𝑅𝑥)
119, 10bitri 277 1 (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ∀𝑥𝐴 𝑥𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  wcel 2114  wral 3138  cin 3935  wss 3936   class class class wbr 5066   I cid 5459   × cxp 5553  cres 5557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-br 5067  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562  df-res 5567
This theorem is referenced by:  idinxpssinxp3  35591  idinxpssinxp4  35592
  Copyright terms: Public domain W3C validator