Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idinxpssinxp2 Structured version   Visualization version   GIF version

Theorem idinxpssinxp2 37677
Description: Identity intersection with a square Cartesian product in subclass relation with an intersection with the same Cartesian product. (Contributed by Peter Mazsa, 4-Mar-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
idinxpssinxp2 (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ∀𝑥𝐴 𝑥𝑅𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅

Proof of Theorem idinxpssinxp2
StepHypRef Expression
1 idinxpresid 6037 . . . 4 ( I ∩ (𝐴 × 𝐴)) = ( I ↾ 𝐴)
21sseq1i 4002 . . 3 (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ( I ↾ 𝐴) ⊆ (𝑅 ∩ (𝐴 × 𝐴)))
3 idrefALT 6102 . . 3 (( I ↾ 𝐴) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ∀𝑥𝐴 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥)
4 brinxp2 5743 . . . . 5 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ↔ ((𝑥𝐴𝑥𝐴) ∧ 𝑥𝑅𝑥))
5 pm4.24 563 . . . . . 6 (𝑥𝐴 ↔ (𝑥𝐴𝑥𝐴))
65anbi1i 623 . . . . 5 ((𝑥𝐴𝑥𝑅𝑥) ↔ ((𝑥𝐴𝑥𝐴) ∧ 𝑥𝑅𝑥))
74, 6bitr4i 278 . . . 4 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ↔ (𝑥𝐴𝑥𝑅𝑥))
87ralbii 3085 . . 3 (∀𝑥𝐴 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ↔ ∀𝑥𝐴 (𝑥𝐴𝑥𝑅𝑥))
92, 3, 83bitri 297 . 2 (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ∀𝑥𝐴 (𝑥𝐴𝑥𝑅𝑥))
10 ralanid 3087 . 2 (∀𝑥𝐴 (𝑥𝐴𝑥𝑅𝑥) ↔ ∀𝑥𝐴 𝑥𝑅𝑥)
119, 10bitri 275 1 (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ∀𝑥𝐴 𝑥𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wcel 2098  wral 3053  cin 3939  wss 3940   class class class wbr 5138   I cid 5563   × cxp 5664  cres 5668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-11 2146  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-br 5139  df-opab 5201  df-id 5564  df-xp 5672  df-rel 5673  df-res 5678
This theorem is referenced by:  idinxpssinxp3  37678  idinxpssinxp4  37679
  Copyright terms: Public domain W3C validator