Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > idinxpssinxp2 | Structured version Visualization version GIF version |
Description: Identity intersection with a square Cartesian product in subclass relation with an intersection with the same Cartesian product. (Contributed by Peter Mazsa, 4-Mar-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
idinxpssinxp2 | ⊢ (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idinxpresid 5944 | . . . 4 ⊢ ( I ∩ (𝐴 × 𝐴)) = ( I ↾ 𝐴) | |
2 | 1 | sseq1i 3945 | . . 3 ⊢ (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ( I ↾ 𝐴) ⊆ (𝑅 ∩ (𝐴 × 𝐴))) |
3 | idrefALT 6007 | . . 3 ⊢ (( I ↾ 𝐴) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ∀𝑥 ∈ 𝐴 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥) | |
4 | brinxp2 5655 | . . . . 5 ⊢ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥𝑅𝑥)) | |
5 | pm4.24 563 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) | |
6 | 5 | anbi1i 623 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑥) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥𝑅𝑥)) |
7 | 4, 6 | bitr4i 277 | . . . 4 ⊢ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑥)) |
8 | 7 | ralbii 3090 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑥)) |
9 | 2, 3, 8 | 3bitri 296 | . 2 ⊢ (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑥)) |
10 | ralanid 3093 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑥) ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) | |
11 | 9, 10 | bitri 274 | 1 ⊢ (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ∀wral 3063 ∩ cin 3882 ⊆ wss 3883 class class class wbr 5070 I cid 5479 × cxp 5578 ↾ cres 5582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-res 5592 |
This theorem is referenced by: idinxpssinxp3 36381 idinxpssinxp4 36382 |
Copyright terms: Public domain | W3C validator |