| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idinxpssinxp2 | Structured version Visualization version GIF version | ||
| Description: Identity intersection with a square Cartesian product in subclass relation with an intersection with the same Cartesian product. (Contributed by Peter Mazsa, 4-Mar-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| idinxpssinxp2 | ⊢ (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idinxpresid 6004 | . . . 4 ⊢ ( I ∩ (𝐴 × 𝐴)) = ( I ↾ 𝐴) | |
| 2 | 1 | sseq1i 3959 | . . 3 ⊢ (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ( I ↾ 𝐴) ⊆ (𝑅 ∩ (𝐴 × 𝐴))) |
| 3 | idrefALT 6067 | . . 3 ⊢ (( I ↾ 𝐴) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ∀𝑥 ∈ 𝐴 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥) | |
| 4 | brinxp2 5699 | . . . . 5 ⊢ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥𝑅𝑥)) | |
| 5 | pm4.24 563 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) | |
| 6 | 5 | anbi1i 624 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑥) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥𝑅𝑥)) |
| 7 | 4, 6 | bitr4i 278 | . . . 4 ⊢ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑥)) |
| 8 | 7 | ralbii 3079 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑥)) |
| 9 | 2, 3, 8 | 3bitri 297 | . 2 ⊢ (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑥)) |
| 10 | ralanid 3081 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑥) ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) | |
| 11 | 9, 10 | bitri 275 | 1 ⊢ (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2113 ∀wral 3048 ∩ cin 3897 ⊆ wss 3898 class class class wbr 5095 I cid 5515 × cxp 5619 ↾ cres 5623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-11 2162 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-res 5633 |
| This theorem is referenced by: idinxpssinxp3 38430 idinxpssinxp4 38431 |
| Copyright terms: Public domain | W3C validator |