![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > idinxpssinxp2 | Structured version Visualization version GIF version |
Description: Identity intersection with a square Cartesian product in subclass relation with an intersection with the same Cartesian product. (Contributed by Peter Mazsa, 4-Mar-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
idinxpssinxp2 | ⊢ (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idinxpresid 6067 | . . . 4 ⊢ ( I ∩ (𝐴 × 𝐴)) = ( I ↾ 𝐴) | |
2 | 1 | sseq1i 4023 | . . 3 ⊢ (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ( I ↾ 𝐴) ⊆ (𝑅 ∩ (𝐴 × 𝐴))) |
3 | idrefALT 6133 | . . 3 ⊢ (( I ↾ 𝐴) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ∀𝑥 ∈ 𝐴 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥) | |
4 | brinxp2 5765 | . . . . 5 ⊢ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥𝑅𝑥)) | |
5 | pm4.24 563 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) | |
6 | 5 | anbi1i 624 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑥) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥𝑅𝑥)) |
7 | 4, 6 | bitr4i 278 | . . . 4 ⊢ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑥)) |
8 | 7 | ralbii 3090 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑥)) |
9 | 2, 3, 8 | 3bitri 297 | . 2 ⊢ (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑥)) |
10 | ralanid 3092 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑥) ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) | |
11 | 9, 10 | bitri 275 | 1 ⊢ (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2105 ∀wral 3058 ∩ cin 3961 ⊆ wss 3962 class class class wbr 5147 I cid 5581 × cxp 5686 ↾ cres 5690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-11 2154 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-id 5582 df-xp 5694 df-rel 5695 df-res 5700 |
This theorem is referenced by: idinxpssinxp3 38300 idinxpssinxp4 38301 |
Copyright terms: Public domain | W3C validator |