Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralbiia | Structured version Visualization version GIF version |
Description: Inference adding restricted universal quantifier to both sides of an equivalence. (Contributed by NM, 26-Nov-2000.) |
Ref | Expression |
---|---|
ralbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ralbiia | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbiia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | pm5.74i 270 | . 2 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐴 → 𝜓)) |
3 | 2 | ralbii2 3088 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2108 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-ral 3068 |
This theorem is referenced by: ralbii 3090 ralanid 3093 poinxp 5658 soinxp 5659 seinxp 5661 dffun8 6446 funcnv3 6488 fncnv 6491 fnres 6543 fvreseq0 6897 isoini2 7190 smores 8154 tfr3ALT 8204 resixp 8679 ixpfi2 9047 marypha1lem 9122 ac5num 9723 acni2 9733 acndom 9738 dfac4 9809 brdom7disj 10218 brdom6disj 10219 fpwwe2lem7 10324 axgroth6 10515 rabssnn0fi 13634 lo1res 15196 isprm5 16340 prmreclem2 16546 tsrss 18222 gass 18822 efgval2 19245 efgsres 19259 acsfn1p 19982 isdomn2 20483 islinds2 20930 isclo 22146 ptclsg 22674 ufilcmp 23091 cfilres 24365 ovolgelb 24549 volsup2 24674 vitali 24682 itg1climres 24784 itg2seq 24812 itg2monolem1 24820 itg2mono 24823 itg2i1fseq 24825 itg2cn 24833 ellimc2 24946 rolle 25059 lhop1 25083 itgsubstlem 25117 tdeglem4 25129 tdeglem4OLD 25130 dvdsmulf1o 26248 dchrelbas2 26290 selbergsb 26628 axcontlem2 27236 dfconngr1 28453 hodsi 30038 ho01i 30091 ho02i 30092 lnopeqi 30271 nmcopexi 30290 nmcfnexi 30314 cnlnadjlem3 30332 cnlnadjlem5 30334 leop3 30388 pjssposi 30435 largei 30530 mdsl2i 30585 mdsl2bi 30586 elat2 30603 dmdbr5ati 30685 cdj3lem3b 30703 subfacp1lem3 33044 dfso3 33566 phpreu 35688 ptrecube 35704 mblfinlem1 35741 voliunnfl 35748 alephiso2 41054 ntrneiel2 41585 ismbl3 43417 ismbl4 43424 sge0lefimpt 43851 sbgoldbalt 45121 |
Copyright terms: Public domain | W3C validator |