| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralbiia | Structured version Visualization version GIF version | ||
| Description: Inference adding restricted universal quantifier to both sides of an equivalence. (Contributed by NM, 26-Nov-2000.) |
| Ref | Expression |
|---|---|
| ralbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralbiia | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralbiia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | pm5.74i 271 | . 2 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐴 → 𝜓)) |
| 3 | 2 | ralbii2 3074 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2111 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-ral 3048 |
| This theorem is referenced by: ralbii 3078 ralanid 3080 poinxp 5695 soinxp 5696 seinxp 5698 dffun8 6509 funcnv3 6551 fncnv 6554 fnres 6608 fvreseq0 6971 isoini2 7273 smores 8272 tfr3ALT 8321 resixp 8857 ixpfi2 9234 marypha1lem 9317 ac5num 9927 acni2 9937 acndom 9942 dfac4 10013 brdom7disj 10422 brdom6disj 10423 fpwwe2lem7 10528 axgroth6 10719 rabssnn0fi 13893 lo1res 15466 isprm5 16618 prmreclem2 16829 tsrss 18495 gass 19213 efgval2 19636 efgsres 19650 isdomn2 20626 isdomn2OLD 20627 acsfn1p 20714 islinds2 21750 isclo 23002 ptclsg 23530 ufilcmp 23947 cfilres 25223 ovolgelb 25408 volsup2 25533 vitali 25541 itg1climres 25642 itg2seq 25670 itg2monolem1 25678 itg2mono 25681 itg2i1fseq 25683 itg2cn 25691 ellimc2 25805 rolle 25921 lhop1 25946 itgsubstlem 25982 tdeglem4 25992 mpodvdsmulf1o 27131 dvdsmulf1o 27133 dchrelbas2 27175 selbergsb 27513 axcontlem2 28943 dfconngr1 30168 hodsi 31755 ho01i 31808 ho02i 31809 lnopeqi 31988 nmcopexi 32007 nmcfnexi 32031 cnlnadjlem3 32049 cnlnadjlem5 32051 leop3 32105 pjssposi 32152 largei 32247 mdsl2i 32302 mdsl2bi 32303 elat2 32320 dmdbr5ati 32402 cdj3lem3b 32420 subfacp1lem3 35226 dfso3 35764 phpreu 37643 ptrecube 37659 mblfinlem1 37696 voliunnfl 37703 disjressuc2 38434 fimgmcyc 42626 alephiso2 43650 ntrneiel2 44178 wfac8prim 45094 ismbl3 46083 ismbl4 46090 sge0lefimpt 46520 sbgoldbalt 47880 |
| Copyright terms: Public domain | W3C validator |