| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralbiia | Structured version Visualization version GIF version | ||
| Description: Inference adding restricted universal quantifier to both sides of an equivalence. (Contributed by NM, 26-Nov-2000.) |
| Ref | Expression |
|---|---|
| ralbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralbiia | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralbiia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | pm5.74i 271 | . 2 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐴 → 𝜓)) |
| 3 | 2 | ralbii2 3071 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ral 3045 |
| This theorem is referenced by: ralbii 3075 ralanid 3077 poinxp 5700 soinxp 5701 seinxp 5703 dffun8 6510 funcnv3 6552 fncnv 6555 fnres 6609 fvreseq0 6972 isoini2 7276 smores 8275 tfr3ALT 8324 resixp 8860 ixpfi2 9240 marypha1lem 9323 ac5num 9930 acni2 9940 acndom 9945 dfac4 10016 brdom7disj 10425 brdom6disj 10426 fpwwe2lem7 10531 axgroth6 10722 rabssnn0fi 13893 lo1res 15466 isprm5 16618 prmreclem2 16829 tsrss 18495 gass 19180 efgval2 19603 efgsres 19617 isdomn2 20596 isdomn2OLD 20597 acsfn1p 20684 islinds2 21720 isclo 22972 ptclsg 23500 ufilcmp 23917 cfilres 25194 ovolgelb 25379 volsup2 25504 vitali 25512 itg1climres 25613 itg2seq 25641 itg2monolem1 25649 itg2mono 25652 itg2i1fseq 25654 itg2cn 25662 ellimc2 25776 rolle 25892 lhop1 25917 itgsubstlem 25953 tdeglem4 25963 mpodvdsmulf1o 27102 dvdsmulf1o 27104 dchrelbas2 27146 selbergsb 27484 axcontlem2 28910 dfconngr1 30132 hodsi 31719 ho01i 31772 ho02i 31773 lnopeqi 31952 nmcopexi 31971 nmcfnexi 31995 cnlnadjlem3 32013 cnlnadjlem5 32015 leop3 32069 pjssposi 32116 largei 32211 mdsl2i 32266 mdsl2bi 32267 elat2 32284 dmdbr5ati 32366 cdj3lem3b 32384 subfacp1lem3 35165 dfso3 35703 phpreu 37594 ptrecube 37610 mblfinlem1 37647 voliunnfl 37654 disjressuc2 38370 fimgmcyc 42517 alephiso2 43541 ntrneiel2 44069 wfac8prim 44986 ismbl3 45977 ismbl4 45984 sge0lefimpt 46414 sbgoldbalt 47775 |
| Copyright terms: Public domain | W3C validator |