![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralbiia | Structured version Visualization version GIF version |
Description: Inference adding restricted universal quantifier to both sides of an equivalence. (Contributed by NM, 26-Nov-2000.) |
Ref | Expression |
---|---|
ralbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ralbiia | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbiia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | pm5.74i 271 | . 2 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐴 → 𝜓)) |
3 | 2 | ralbii2 3095 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-ral 3068 |
This theorem is referenced by: ralbii 3099 ralanid 3101 poinxp 5780 soinxp 5781 seinxp 5783 dffun8 6606 funcnv3 6648 fncnv 6651 fnres 6707 fvreseq0 7071 isoini2 7375 smores 8408 tfr3ALT 8458 resixp 8991 ixpfi2 9420 marypha1lem 9502 ac5num 10105 acni2 10115 acndom 10120 dfac4 10191 brdom7disj 10600 brdom6disj 10601 fpwwe2lem7 10706 axgroth6 10897 rabssnn0fi 14037 lo1res 15605 isprm5 16754 prmreclem2 16964 tsrss 18659 gass 19341 efgval2 19766 efgsres 19780 isdomn2 20733 isdomn2OLD 20734 acsfn1p 20822 islinds2 21856 isclo 23116 ptclsg 23644 ufilcmp 24061 cfilres 25349 ovolgelb 25534 volsup2 25659 vitali 25667 itg1climres 25769 itg2seq 25797 itg2monolem1 25805 itg2mono 25808 itg2i1fseq 25810 itg2cn 25818 ellimc2 25932 rolle 26048 lhop1 26073 itgsubstlem 26109 tdeglem4 26119 mpodvdsmulf1o 27255 dvdsmulf1o 27257 dchrelbas2 27299 selbergsb 27637 axcontlem2 28998 dfconngr1 30220 hodsi 31807 ho01i 31860 ho02i 31861 lnopeqi 32040 nmcopexi 32059 nmcfnexi 32083 cnlnadjlem3 32101 cnlnadjlem5 32103 leop3 32157 pjssposi 32204 largei 32299 mdsl2i 32354 mdsl2bi 32355 elat2 32372 dmdbr5ati 32454 cdj3lem3b 32472 subfacp1lem3 35150 dfso3 35682 phpreu 37564 ptrecube 37580 mblfinlem1 37617 voliunnfl 37624 disjressuc2 38344 fimgmcyc 42489 alephiso2 43520 ntrneiel2 44048 ismbl3 45907 ismbl4 45914 sge0lefimpt 46344 sbgoldbalt 47655 |
Copyright terms: Public domain | W3C validator |