Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralbiia | Structured version Visualization version GIF version |
Description: Inference adding restricted universal quantifier to both sides of an equivalence. (Contributed by NM, 26-Nov-2000.) |
Ref | Expression |
---|---|
ralbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ralbiia | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbiia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | pm5.74i 274 | . 2 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐴 → 𝜓)) |
3 | 2 | ralbii2 3079 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∈ wcel 2114 ∀wral 3054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 |
This theorem depends on definitions: df-bi 210 df-ral 3059 |
This theorem is referenced by: ralbii 3081 ralanid 3084 poinxp 5613 soinxp 5614 seinxp 5616 dffun8 6377 funcnv3 6419 fncnv 6422 fnres 6473 fvreseq0 6827 isoini2 7117 smores 8030 tfr3ALT 8079 resixp 8555 ixpfi2 8907 marypha1lem 8982 ac5num 9548 acni2 9558 acndom 9563 dfac4 9634 brdom7disj 10043 brdom6disj 10044 fpwwe2lem7 10149 axgroth6 10340 rabssnn0fi 13457 lo1res 15018 isprm5 16160 prmreclem2 16365 tsrss 17961 gass 18561 efgval2 18980 efgsres 18994 acsfn1p 19709 isdomn2 20203 islinds2 20641 isclo 21850 ptclsg 22378 ufilcmp 22795 cfilres 24060 ovolgelb 24244 volsup2 24369 vitali 24377 itg1climres 24479 itg2seq 24507 itg2monolem1 24515 itg2mono 24518 itg2i1fseq 24520 itg2cn 24528 ellimc2 24641 rolle 24754 lhop1 24778 itgsubstlem 24812 tdeglem4 24824 tdeglem4OLD 24825 dvdsmulf1o 25943 dchrelbas2 25985 selbergsb 26323 axcontlem2 26923 dfconngr1 28137 hodsi 29722 ho01i 29775 ho02i 29776 lnopeqi 29955 nmcopexi 29974 nmcfnexi 29998 cnlnadjlem3 30016 cnlnadjlem5 30018 leop3 30072 pjssposi 30119 largei 30214 mdsl2i 30269 mdsl2bi 30270 elat2 30287 dmdbr5ati 30369 cdj3lem3b 30387 subfacp1lem3 32727 dfso3 33249 phpreu 35416 ptrecube 35432 mblfinlem1 35469 voliunnfl 35476 alephiso2 40750 ntrneiel2 41282 ismbl3 43109 ismbl4 43116 sge0lefimpt 43543 sbgoldbalt 44814 |
Copyright terms: Public domain | W3C validator |