| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralbiia | Structured version Visualization version GIF version | ||
| Description: Inference adding restricted universal quantifier to both sides of an equivalence. (Contributed by NM, 26-Nov-2000.) |
| Ref | Expression |
|---|---|
| ralbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralbiia | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralbiia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | pm5.74i 271 | . 2 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐴 → 𝜓)) |
| 3 | 2 | ralbii2 3071 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ral 3045 |
| This theorem is referenced by: ralbii 3075 ralanid 3077 poinxp 5712 soinxp 5713 seinxp 5715 dffun8 6528 funcnv3 6570 fncnv 6573 fnres 6627 fvreseq0 6992 isoini2 7296 smores 8298 tfr3ALT 8347 resixp 8883 ixpfi2 9277 marypha1lem 9360 ac5num 9965 acni2 9975 acndom 9980 dfac4 10051 brdom7disj 10460 brdom6disj 10461 fpwwe2lem7 10566 axgroth6 10757 rabssnn0fi 13927 lo1res 15501 isprm5 16653 prmreclem2 16864 tsrss 18530 gass 19215 efgval2 19638 efgsres 19652 isdomn2 20631 isdomn2OLD 20632 acsfn1p 20719 islinds2 21755 isclo 23007 ptclsg 23535 ufilcmp 23952 cfilres 25229 ovolgelb 25414 volsup2 25539 vitali 25547 itg1climres 25648 itg2seq 25676 itg2monolem1 25684 itg2mono 25687 itg2i1fseq 25689 itg2cn 25697 ellimc2 25811 rolle 25927 lhop1 25952 itgsubstlem 25988 tdeglem4 25998 mpodvdsmulf1o 27137 dvdsmulf1o 27139 dchrelbas2 27181 selbergsb 27519 axcontlem2 28945 dfconngr1 30167 hodsi 31754 ho01i 31807 ho02i 31808 lnopeqi 31987 nmcopexi 32006 nmcfnexi 32030 cnlnadjlem3 32048 cnlnadjlem5 32050 leop3 32104 pjssposi 32151 largei 32246 mdsl2i 32301 mdsl2bi 32302 elat2 32319 dmdbr5ati 32401 cdj3lem3b 32419 subfacp1lem3 35162 dfso3 35700 phpreu 37591 ptrecube 37607 mblfinlem1 37644 voliunnfl 37651 disjressuc2 38367 fimgmcyc 42515 alephiso2 43540 ntrneiel2 44068 wfac8prim 44985 ismbl3 45977 ismbl4 45984 sge0lefimpt 46414 sbgoldbalt 47775 |
| Copyright terms: Public domain | W3C validator |