![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralbiia | Structured version Visualization version GIF version |
Description: Inference adding restricted universal quantifier to both sides of an equivalence. (Contributed by NM, 26-Nov-2000.) |
Ref | Expression |
---|---|
ralbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ralbiia | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbiia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | pm5.74i 270 | . 2 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐴 → 𝜓)) |
3 | 2 | ralbii2 3089 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2106 ∀wral 3061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 |
This theorem depends on definitions: df-bi 206 df-ral 3062 |
This theorem is referenced by: ralbii 3093 ralanid 3095 poinxp 5756 soinxp 5757 seinxp 5759 dffun8 6576 funcnv3 6618 fncnv 6621 fnres 6677 fvreseq0 7039 isoini2 7338 smores 8354 tfr3ALT 8404 resixp 8929 ixpfi2 9352 marypha1lem 9430 ac5num 10033 acni2 10043 acndom 10048 dfac4 10119 brdom7disj 10528 brdom6disj 10529 fpwwe2lem7 10634 axgroth6 10825 rabssnn0fi 13955 lo1res 15507 isprm5 16648 prmreclem2 16854 tsrss 18546 gass 19206 efgval2 19633 efgsres 19647 acsfn1p 20558 isdomn2 21115 islinds2 21587 isclo 22811 ptclsg 23339 ufilcmp 23756 cfilres 25037 ovolgelb 25221 volsup2 25346 vitali 25354 itg1climres 25456 itg2seq 25484 itg2monolem1 25492 itg2mono 25495 itg2i1fseq 25497 itg2cn 25505 ellimc2 25618 rolle 25731 lhop1 25755 itgsubstlem 25789 tdeglem4 25801 tdeglem4OLD 25802 dvdsmulf1o 26922 dchrelbas2 26964 selbergsb 27302 axcontlem2 28478 dfconngr1 29696 hodsi 31283 ho01i 31336 ho02i 31337 lnopeqi 31516 nmcopexi 31535 nmcfnexi 31559 cnlnadjlem3 31577 cnlnadjlem5 31579 leop3 31633 pjssposi 31680 largei 31775 mdsl2i 31830 mdsl2bi 31831 elat2 31848 dmdbr5ati 31930 cdj3lem3b 31948 subfacp1lem3 34459 dfso3 34981 phpreu 36775 ptrecube 36791 mblfinlem1 36828 voliunnfl 36835 disjressuc2 37561 alephiso2 42611 ntrneiel2 43139 ismbl3 45001 ismbl4 45008 sge0lefimpt 45438 sbgoldbalt 46748 |
Copyright terms: Public domain | W3C validator |