| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralbiia | Structured version Visualization version GIF version | ||
| Description: Inference adding restricted universal quantifier to both sides of an equivalence. (Contributed by NM, 26-Nov-2000.) |
| Ref | Expression |
|---|---|
| ralbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralbiia | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralbiia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | pm5.74i 271 | . 2 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐴 → 𝜓)) |
| 3 | 2 | ralbii2 3079 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ∀wral 3052 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ral 3053 |
| This theorem is referenced by: ralbii 3083 ralanid 3085 poinxp 5740 soinxp 5741 seinxp 5743 dffun8 6569 funcnv3 6611 fncnv 6614 fnres 6670 fvreseq0 7033 isoini2 7337 smores 8371 tfr3ALT 8421 resixp 8952 ixpfi2 9367 marypha1lem 9450 ac5num 10055 acni2 10065 acndom 10070 dfac4 10141 brdom7disj 10550 brdom6disj 10551 fpwwe2lem7 10656 axgroth6 10847 rabssnn0fi 14009 lo1res 15580 isprm5 16731 prmreclem2 16942 tsrss 18604 gass 19289 efgval2 19710 efgsres 19724 isdomn2 20676 isdomn2OLD 20677 acsfn1p 20764 islinds2 21778 isclo 23030 ptclsg 23558 ufilcmp 23975 cfilres 25253 ovolgelb 25438 volsup2 25563 vitali 25571 itg1climres 25672 itg2seq 25700 itg2monolem1 25708 itg2mono 25711 itg2i1fseq 25713 itg2cn 25721 ellimc2 25835 rolle 25951 lhop1 25976 itgsubstlem 26012 tdeglem4 26022 mpodvdsmulf1o 27161 dvdsmulf1o 27163 dchrelbas2 27205 selbergsb 27543 axcontlem2 28949 dfconngr1 30174 hodsi 31761 ho01i 31814 ho02i 31815 lnopeqi 31994 nmcopexi 32013 nmcfnexi 32037 cnlnadjlem3 32055 cnlnadjlem5 32057 leop3 32111 pjssposi 32158 largei 32253 mdsl2i 32308 mdsl2bi 32309 elat2 32326 dmdbr5ati 32408 cdj3lem3b 32426 subfacp1lem3 35209 dfso3 35742 phpreu 37633 ptrecube 37649 mblfinlem1 37686 voliunnfl 37693 disjressuc2 38411 fimgmcyc 42524 alephiso2 43549 ntrneiel2 44077 wfac8prim 44994 ismbl3 45982 ismbl4 45989 sge0lefimpt 46419 sbgoldbalt 47762 |
| Copyright terms: Public domain | W3C validator |