![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralbiia | Structured version Visualization version GIF version |
Description: Inference adding restricted universal quantifier to both sides of an equivalence. (Contributed by NM, 26-Nov-2000.) |
Ref | Expression |
---|---|
ralbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ralbiia | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbiia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | pm5.74i 271 | . 2 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐴 → 𝜓)) |
3 | 2 | ralbii2 3090 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2107 ∀wral 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-ral 3063 |
This theorem is referenced by: ralbii 3094 ralanid 3096 poinxp 5757 soinxp 5758 seinxp 5760 dffun8 6577 funcnv3 6619 fncnv 6622 fnres 6678 fvreseq0 7040 isoini2 7336 smores 8352 tfr3ALT 8402 resixp 8927 ixpfi2 9350 marypha1lem 9428 ac5num 10031 acni2 10041 acndom 10046 dfac4 10117 brdom7disj 10526 brdom6disj 10527 fpwwe2lem7 10632 axgroth6 10823 rabssnn0fi 13951 lo1res 15503 isprm5 16644 prmreclem2 16850 tsrss 18542 gass 19165 efgval2 19592 efgsres 19606 acsfn1p 20415 isdomn2 20915 islinds2 21368 isclo 22591 ptclsg 23119 ufilcmp 23536 cfilres 24813 ovolgelb 24997 volsup2 25122 vitali 25130 itg1climres 25232 itg2seq 25260 itg2monolem1 25268 itg2mono 25271 itg2i1fseq 25273 itg2cn 25281 ellimc2 25394 rolle 25507 lhop1 25531 itgsubstlem 25565 tdeglem4 25577 tdeglem4OLD 25578 dvdsmulf1o 26698 dchrelbas2 26740 selbergsb 27078 axcontlem2 28223 dfconngr1 29441 hodsi 31028 ho01i 31081 ho02i 31082 lnopeqi 31261 nmcopexi 31280 nmcfnexi 31304 cnlnadjlem3 31322 cnlnadjlem5 31324 leop3 31378 pjssposi 31425 largei 31520 mdsl2i 31575 mdsl2bi 31576 elat2 31593 dmdbr5ati 31675 cdj3lem3b 31693 subfacp1lem3 34173 dfso3 34689 phpreu 36472 ptrecube 36488 mblfinlem1 36525 voliunnfl 36532 disjressuc2 37258 alephiso2 42309 ntrneiel2 42837 ismbl3 44702 ismbl4 44709 sge0lefimpt 45139 sbgoldbalt 46449 |
Copyright terms: Public domain | W3C validator |