| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralbiia | Structured version Visualization version GIF version | ||
| Description: Inference adding restricted universal quantifier to both sides of an equivalence. (Contributed by NM, 26-Nov-2000.) |
| Ref | Expression |
|---|---|
| ralbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralbiia | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralbiia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | pm5.74i 271 | . 2 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐴 → 𝜓)) |
| 3 | 2 | ralbii2 3071 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ral 3045 |
| This theorem is referenced by: ralbii 3075 ralanid 3077 poinxp 5719 soinxp 5720 seinxp 5722 dffun8 6544 funcnv3 6586 fncnv 6589 fnres 6645 fvreseq0 7010 isoini2 7314 smores 8321 tfr3ALT 8370 resixp 8906 ixpfi2 9301 marypha1lem 9384 ac5num 9989 acni2 9999 acndom 10004 dfac4 10075 brdom7disj 10484 brdom6disj 10485 fpwwe2lem7 10590 axgroth6 10781 rabssnn0fi 13951 lo1res 15525 isprm5 16677 prmreclem2 16888 tsrss 18548 gass 19233 efgval2 19654 efgsres 19668 isdomn2 20620 isdomn2OLD 20621 acsfn1p 20708 islinds2 21722 isclo 22974 ptclsg 23502 ufilcmp 23919 cfilres 25196 ovolgelb 25381 volsup2 25506 vitali 25514 itg1climres 25615 itg2seq 25643 itg2monolem1 25651 itg2mono 25654 itg2i1fseq 25656 itg2cn 25664 ellimc2 25778 rolle 25894 lhop1 25919 itgsubstlem 25955 tdeglem4 25965 mpodvdsmulf1o 27104 dvdsmulf1o 27106 dchrelbas2 27148 selbergsb 27486 axcontlem2 28892 dfconngr1 30117 hodsi 31704 ho01i 31757 ho02i 31758 lnopeqi 31937 nmcopexi 31956 nmcfnexi 31980 cnlnadjlem3 31998 cnlnadjlem5 32000 leop3 32054 pjssposi 32101 largei 32196 mdsl2i 32251 mdsl2bi 32252 elat2 32269 dmdbr5ati 32351 cdj3lem3b 32369 subfacp1lem3 35169 dfso3 35707 phpreu 37598 ptrecube 37614 mblfinlem1 37651 voliunnfl 37658 disjressuc2 38374 fimgmcyc 42522 alephiso2 43547 ntrneiel2 44075 wfac8prim 44992 ismbl3 45984 ismbl4 45991 sge0lefimpt 46421 sbgoldbalt 47779 |
| Copyright terms: Public domain | W3C validator |