MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralbidv2 Structured version   Visualization version   GIF version

Theorem ralbidv2 3180
Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Apr-1997.)
Hypothesis
Ref Expression
ralbidv2.1 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒)))
Assertion
Ref Expression
ralbidv2 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem ralbidv2
StepHypRef Expression
1 ralbidv2.1 . . 3 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒)))
21albidv 1919 . 2 (𝜑 → (∀𝑥(𝑥𝐴𝜓) ↔ ∀𝑥(𝑥𝐵𝜒)))
3 df-ral 3068 . 2 (∀𝑥𝐴 𝜓 ↔ ∀𝑥(𝑥𝐴𝜓))
4 df-ral 3068 . 2 (∀𝑥𝐵 𝜒 ↔ ∀𝑥(𝑥𝐵𝜒))
52, 3, 43bitr4g 314 1 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  wcel 2108  wral 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909
This theorem depends on definitions:  df-bi 207  df-ral 3068
This theorem is referenced by:  ralbidva  3182  raleqbidv  3354  ralss  4083  oneqmini  6447  ordunisuc2  7881  dfsmo2  8403  wemapsolem  9619  zorn2lem1  10565  raluz  12961  limsupgle  15523  ello12  15562  elo12  15573  lo1resb  15610  rlimresb  15611  o1resb  15612  isprm3  16730  isprm7  16755  ist1-2  23376  hausdiag  23674  xkopt  23684  cnflf  24031  cnfcf  24071  metcnp  24575  caucfil  25336  mdegleb  26123  islinds5  33360  islbs5  33373  eulerpartlemgvv  34341  filnetlem4  36347  mnuunid  44246  iineq12dv  45008  hoidmvle  46521  elbigo2  48286  ralbidb  48533  ralbidc  48534
  Copyright terms: Public domain W3C validator