MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralbidv2 Structured version   Visualization version   GIF version

Theorem ralbidv2 3151
Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Apr-1997.)
Hypothesis
Ref Expression
ralbidv2.1 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒)))
Assertion
Ref Expression
ralbidv2 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem ralbidv2
StepHypRef Expression
1 ralbidv2.1 . . 3 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒)))
21albidv 1921 . 2 (𝜑 → (∀𝑥(𝑥𝐴𝜓) ↔ ∀𝑥(𝑥𝐵𝜒)))
3 df-ral 3048 . 2 (∀𝑥𝐴 𝜓 ↔ ∀𝑥(𝑥𝐴𝜓))
4 df-ral 3048 . 2 (∀𝑥𝐵 𝜒 ↔ ∀𝑥(𝑥𝐵𝜒))
52, 3, 43bitr4g 314 1 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1539  wcel 2111  wral 3047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911
This theorem depends on definitions:  df-bi 207  df-ral 3048
This theorem is referenced by:  ralbidva  3153  raleqbidv  3312  ralssOLD  4006  oneqmini  6359  ordunisuc2  7774  dfsmo2  8267  wemapsolem  9436  zorn2lem1  10387  raluz  12794  limsupgle  15384  ello12  15423  elo12  15434  lo1resb  15471  rlimresb  15472  o1resb  15473  isprm3  16594  isprm7  16619  ist1-2  23262  hausdiag  23560  xkopt  23570  cnflf  23917  cnfcf  23957  metcnp  24456  caucfil  25210  mdegleb  25996  islinds5  33332  islbs5  33345  eulerpartlemgvv  34389  filnetlem4  36425  mnuunid  44380  iineq12dv  45213  hoidmvle  46708  elbigo2  48663  ralbidb  48910  ralbidc  48911
  Copyright terms: Public domain W3C validator