MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralbidv2 Structured version   Visualization version   GIF version

Theorem ralbidv2 3152
Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Apr-1997.)
Hypothesis
Ref Expression
ralbidv2.1 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒)))
Assertion
Ref Expression
ralbidv2 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem ralbidv2
StepHypRef Expression
1 ralbidv2.1 . . 3 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒)))
21albidv 1920 . 2 (𝜑 → (∀𝑥(𝑥𝐴𝜓) ↔ ∀𝑥(𝑥𝐵𝜒)))
3 df-ral 3045 . 2 (∀𝑥𝐴 𝜓 ↔ ∀𝑥(𝑥𝐴𝜓))
4 df-ral 3045 . 2 (∀𝑥𝐵 𝜒 ↔ ∀𝑥(𝑥𝐵𝜒))
52, 3, 43bitr4g 314 1 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  wcel 2109  wral 3044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910
This theorem depends on definitions:  df-bi 207  df-ral 3045
This theorem is referenced by:  ralbidva  3154  raleqbidv  3316  ralssOLD  4020  oneqmini  6373  ordunisuc2  7800  dfsmo2  8293  wemapsolem  9479  zorn2lem1  10425  raluz  12831  limsupgle  15419  ello12  15458  elo12  15469  lo1resb  15506  rlimresb  15507  o1resb  15508  isprm3  16629  isprm7  16654  ist1-2  23267  hausdiag  23565  xkopt  23575  cnflf  23922  cnfcf  23962  metcnp  24462  caucfil  25216  mdegleb  26002  islinds5  33331  islbs5  33344  eulerpartlemgvv  34360  filnetlem4  36362  mnuunid  44259  iineq12dv  45093  hoidmvle  46591  elbigo2  48534  ralbidb  48781  ralbidc  48782
  Copyright terms: Public domain W3C validator