| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralbidv2 | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Apr-1997.) |
| Ref | Expression |
|---|---|
| ralbidv2.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) ↔ (𝑥 ∈ 𝐵 → 𝜒))) |
| Ref | Expression |
|---|---|
| ralbidv2 | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralbidv2.1 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) ↔ (𝑥 ∈ 𝐵 → 𝜒))) | |
| 2 | 1 | albidv 1920 | . 2 ⊢ (𝜑 → (∀𝑥(𝑥 ∈ 𝐴 → 𝜓) ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜒))) |
| 3 | df-ral 3046 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
| 4 | df-ral 3046 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜒 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜒)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∈ wcel 2109 ∀wral 3045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ral 3046 |
| This theorem is referenced by: ralbidva 3155 raleqbidv 3321 ralssOLD 4026 oneqmini 6388 ordunisuc2 7823 dfsmo2 8319 wemapsolem 9510 zorn2lem1 10456 raluz 12862 limsupgle 15450 ello12 15489 elo12 15500 lo1resb 15537 rlimresb 15538 o1resb 15539 isprm3 16660 isprm7 16685 ist1-2 23241 hausdiag 23539 xkopt 23549 cnflf 23896 cnfcf 23936 metcnp 24436 caucfil 25190 mdegleb 25976 islinds5 33345 islbs5 33358 eulerpartlemgvv 34374 filnetlem4 36376 mnuunid 44273 iineq12dv 45107 hoidmvle 46605 elbigo2 48545 ralbidb 48792 ralbidc 48793 |
| Copyright terms: Public domain | W3C validator |