![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralbidv2 | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Apr-1997.) |
Ref | Expression |
---|---|
ralbidv2.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) ↔ (𝑥 ∈ 𝐵 → 𝜒))) |
Ref | Expression |
---|---|
ralbidv2 | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbidv2.1 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) ↔ (𝑥 ∈ 𝐵 → 𝜒))) | |
2 | 1 | albidv 1919 | . 2 ⊢ (𝜑 → (∀𝑥(𝑥 ∈ 𝐴 → 𝜓) ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜒))) |
3 | df-ral 3068 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
4 | df-ral 3068 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜒 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜒)) | |
5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 ∈ wcel 2108 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-ral 3068 |
This theorem is referenced by: ralbidva 3182 raleqbidv 3354 ralss 4083 oneqmini 6447 ordunisuc2 7881 dfsmo2 8403 wemapsolem 9619 zorn2lem1 10565 raluz 12961 limsupgle 15523 ello12 15562 elo12 15573 lo1resb 15610 rlimresb 15611 o1resb 15612 isprm3 16730 isprm7 16755 ist1-2 23376 hausdiag 23674 xkopt 23684 cnflf 24031 cnfcf 24071 metcnp 24575 caucfil 25336 mdegleb 26123 islinds5 33360 islbs5 33373 eulerpartlemgvv 34341 filnetlem4 36347 mnuunid 44246 iineq12dv 45008 hoidmvle 46521 elbigo2 48286 ralbidb 48533 ralbidc 48534 |
Copyright terms: Public domain | W3C validator |