| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralbidv2 | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Apr-1997.) |
| Ref | Expression |
|---|---|
| ralbidv2.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) ↔ (𝑥 ∈ 𝐵 → 𝜒))) |
| Ref | Expression |
|---|---|
| ralbidv2 | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralbidv2.1 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) ↔ (𝑥 ∈ 𝐵 → 𝜒))) | |
| 2 | 1 | albidv 1919 | . 2 ⊢ (𝜑 → (∀𝑥(𝑥 ∈ 𝐴 → 𝜓) ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜒))) |
| 3 | df-ral 3051 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
| 4 | df-ral 3051 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜒 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜒)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 ∈ wcel 2107 ∀wral 3050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 |
| This theorem depends on definitions: df-bi 207 df-ral 3051 |
| This theorem is referenced by: ralbidva 3159 raleqbidv 3323 ralssOLD 4033 oneqmini 6402 ordunisuc2 7833 dfsmo2 8355 wemapsolem 9556 zorn2lem1 10502 raluz 12904 limsupgle 15480 ello12 15519 elo12 15530 lo1resb 15567 rlimresb 15568 o1resb 15569 isprm3 16687 isprm7 16712 ist1-2 23270 hausdiag 23568 xkopt 23578 cnflf 23925 cnfcf 23965 metcnp 24465 caucfil 25220 mdegleb 26006 islinds5 33300 islbs5 33313 eulerpartlemgvv 34316 filnetlem4 36320 mnuunid 44227 iineq12dv 45057 hoidmvle 46559 elbigo2 48418 ralbidb 48665 ralbidc 48666 |
| Copyright terms: Public domain | W3C validator |