MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralbidv2 Structured version   Visualization version   GIF version

Theorem ralbidv2 3157
Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Apr-1997.)
Hypothesis
Ref Expression
ralbidv2.1 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒)))
Assertion
Ref Expression
ralbidv2 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem ralbidv2
StepHypRef Expression
1 ralbidv2.1 . . 3 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒)))
21albidv 1919 . 2 (𝜑 → (∀𝑥(𝑥𝐴𝜓) ↔ ∀𝑥(𝑥𝐵𝜒)))
3 df-ral 3051 . 2 (∀𝑥𝐴 𝜓 ↔ ∀𝑥(𝑥𝐴𝜓))
4 df-ral 3051 . 2 (∀𝑥𝐵 𝜒 ↔ ∀𝑥(𝑥𝐵𝜒))
52, 3, 43bitr4g 314 1 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1537  wcel 2107  wral 3050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909
This theorem depends on definitions:  df-bi 207  df-ral 3051
This theorem is referenced by:  ralbidva  3159  raleqbidv  3323  ralssOLD  4033  oneqmini  6402  ordunisuc2  7833  dfsmo2  8355  wemapsolem  9556  zorn2lem1  10502  raluz  12904  limsupgle  15480  ello12  15519  elo12  15530  lo1resb  15567  rlimresb  15568  o1resb  15569  isprm3  16687  isprm7  16712  ist1-2  23270  hausdiag  23568  xkopt  23578  cnflf  23925  cnfcf  23965  metcnp  24465  caucfil  25220  mdegleb  26006  islinds5  33300  islbs5  33313  eulerpartlemgvv  34316  filnetlem4  36320  mnuunid  44227  iineq12dv  45057  hoidmvle  46559  elbigo2  48418  ralbidb  48665  ralbidc  48666
  Copyright terms: Public domain W3C validator