MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralbidv2 Structured version   Visualization version   GIF version

Theorem ralbidv2 3153
Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Apr-1997.)
Hypothesis
Ref Expression
ralbidv2.1 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒)))
Assertion
Ref Expression
ralbidv2 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem ralbidv2
StepHypRef Expression
1 ralbidv2.1 . . 3 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒)))
21albidv 1920 . 2 (𝜑 → (∀𝑥(𝑥𝐴𝜓) ↔ ∀𝑥(𝑥𝐵𝜒)))
3 df-ral 3046 . 2 (∀𝑥𝐴 𝜓 ↔ ∀𝑥(𝑥𝐴𝜓))
4 df-ral 3046 . 2 (∀𝑥𝐵 𝜒 ↔ ∀𝑥(𝑥𝐵𝜒))
52, 3, 43bitr4g 314 1 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  wcel 2109  wral 3045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910
This theorem depends on definitions:  df-bi 207  df-ral 3046
This theorem is referenced by:  ralbidva  3155  raleqbidv  3321  ralssOLD  4026  oneqmini  6388  ordunisuc2  7823  dfsmo2  8319  wemapsolem  9510  zorn2lem1  10456  raluz  12862  limsupgle  15450  ello12  15489  elo12  15500  lo1resb  15537  rlimresb  15538  o1resb  15539  isprm3  16660  isprm7  16685  ist1-2  23241  hausdiag  23539  xkopt  23549  cnflf  23896  cnfcf  23936  metcnp  24436  caucfil  25190  mdegleb  25976  islinds5  33345  islbs5  33358  eulerpartlemgvv  34374  filnetlem4  36376  mnuunid  44273  iineq12dv  45107  hoidmvle  46605  elbigo2  48545  ralbidb  48792  ralbidc  48793
  Copyright terms: Public domain W3C validator