Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralbidv2 | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Apr-1997.) |
Ref | Expression |
---|---|
ralbidv2.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) ↔ (𝑥 ∈ 𝐵 → 𝜒))) |
Ref | Expression |
---|---|
ralbidv2 | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbidv2.1 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) ↔ (𝑥 ∈ 𝐵 → 𝜒))) | |
2 | 1 | albidv 1924 | . 2 ⊢ (𝜑 → (∀𝑥(𝑥 ∈ 𝐴 → 𝜓) ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜒))) |
3 | df-ral 3070 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
4 | df-ral 3070 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜒 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜒)) | |
5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∈ wcel 2107 ∀wral 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-ral 3070 |
This theorem is referenced by: ralbidva 3112 raleqbidv 3337 ralss 3992 oneqmini 6321 ordunisuc2 7700 dfsmo2 8187 wemapsolem 9318 zorn2lem1 10261 raluz 12645 limsupgle 15195 ello12 15234 elo12 15245 lo1resb 15282 rlimresb 15283 o1resb 15284 isprm3 16397 isprm7 16422 ist1-2 22507 hausdiag 22805 xkopt 22815 cnflf 23162 cnfcf 23202 metcnp 23706 caucfil 24456 mdegleb 25238 islinds5 31572 eulerpartlemgvv 32352 filnetlem4 34579 mnuunid 41902 hoidmvle 44145 elbigo2 45909 ralbidb 46156 ralbidc 46157 |
Copyright terms: Public domain | W3C validator |