| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralbidv2 | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Apr-1997.) |
| Ref | Expression |
|---|---|
| ralbidv2.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) ↔ (𝑥 ∈ 𝐵 → 𝜒))) |
| Ref | Expression |
|---|---|
| ralbidv2 | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralbidv2.1 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) ↔ (𝑥 ∈ 𝐵 → 𝜒))) | |
| 2 | 1 | albidv 1920 | . 2 ⊢ (𝜑 → (∀𝑥(𝑥 ∈ 𝐴 → 𝜓) ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜒))) |
| 3 | df-ral 3045 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
| 4 | df-ral 3045 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜒 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜒)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ral 3045 |
| This theorem is referenced by: ralbidva 3154 raleqbidv 3319 ralssOLD 4023 oneqmini 6385 ordunisuc2 7820 dfsmo2 8316 wemapsolem 9503 zorn2lem1 10449 raluz 12855 limsupgle 15443 ello12 15482 elo12 15493 lo1resb 15530 rlimresb 15531 o1resb 15532 isprm3 16653 isprm7 16678 ist1-2 23234 hausdiag 23532 xkopt 23542 cnflf 23889 cnfcf 23929 metcnp 24429 caucfil 25183 mdegleb 25969 islinds5 33338 islbs5 33351 eulerpartlemgvv 34367 filnetlem4 36369 mnuunid 44266 iineq12dv 45100 hoidmvle 46598 elbigo2 48541 ralbidb 48788 ralbidc 48789 |
| Copyright terms: Public domain | W3C validator |