MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralcom4OLD Structured version   Visualization version   GIF version

Theorem ralcom4OLD 3267
Description: Obsolete version of ralcom4 3266 as of 31-Oct-2024. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
ralcom4OLD (∀𝑥𝐴𝑦𝜑 ↔ ∀𝑦𝑥𝐴 𝜑)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem ralcom4OLD
StepHypRef Expression
1 19.21v 1940 . . . . 5 (∀𝑦(𝑥𝐴𝜑) ↔ (𝑥𝐴 → ∀𝑦𝜑))
21bicomi 223 . . . 4 ((𝑥𝐴 → ∀𝑦𝜑) ↔ ∀𝑦(𝑥𝐴𝜑))
32albii 1819 . . 3 (∀𝑥(𝑥𝐴 → ∀𝑦𝜑) ↔ ∀𝑥𝑦(𝑥𝐴𝜑))
4 alcom 2154 . . 3 (∀𝑥𝑦(𝑥𝐴𝜑) ↔ ∀𝑦𝑥(𝑥𝐴𝜑))
53, 4bitri 275 . 2 (∀𝑥(𝑥𝐴 → ∀𝑦𝜑) ↔ ∀𝑦𝑥(𝑥𝐴𝜑))
6 df-ral 3063 . 2 (∀𝑥𝐴𝑦𝜑 ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝜑))
7 df-ral 3063 . . 3 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
87albii 1819 . 2 (∀𝑦𝑥𝐴 𝜑 ↔ ∀𝑦𝑥(𝑥𝐴𝜑))
95, 6, 83bitr4i 303 1 (∀𝑥𝐴𝑦𝜑 ↔ ∀𝑦𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wcel 2104  wral 3062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-11 2152
This theorem depends on definitions:  df-bi 206  df-ex 1780  df-ral 3063
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator