![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralcom4OLD | Structured version Visualization version GIF version |
Description: Obsolete version of ralcom4 3292 as of 31-Oct-2024. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
ralcom4OLD | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.21v 1938 | . . . . 5 ⊢ (∀𝑦(𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐴 → ∀𝑦𝜑)) | |
2 | 1 | bicomi 224 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → ∀𝑦𝜑) ↔ ∀𝑦(𝑥 ∈ 𝐴 → 𝜑)) |
3 | 2 | albii 1817 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦𝜑) ↔ ∀𝑥∀𝑦(𝑥 ∈ 𝐴 → 𝜑)) |
4 | alcom 2160 | . . 3 ⊢ (∀𝑥∀𝑦(𝑥 ∈ 𝐴 → 𝜑) ↔ ∀𝑦∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
5 | 3, 4 | bitri 275 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦𝜑) ↔ ∀𝑦∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
6 | df-ral 3068 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦𝜑)) | |
7 | df-ral 3068 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
8 | 7 | albii 1817 | . 2 ⊢ (∀𝑦∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
9 | 5, 6, 8 | 3bitr4i 303 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 ∈ wcel 2108 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-11 2158 |
This theorem depends on definitions: df-bi 207 df-ex 1778 df-ral 3068 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |