![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralcom4 | Structured version Visualization version GIF version |
Description: Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019.) (Proof shortened by Wolf Lammen, 31-Oct-2024.) |
Ref | Expression |
---|---|
ralcom4 | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.21v 1943 | . . . 4 ⊢ (∀𝑦(𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐴 → ∀𝑦𝜑)) | |
2 | 1 | albii 1822 | . . 3 ⊢ (∀𝑥∀𝑦(𝑥 ∈ 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦𝜑)) |
3 | alcom 2157 | . . 3 ⊢ (∀𝑦∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ↔ ∀𝑥∀𝑦(𝑥 ∈ 𝐴 → 𝜑)) | |
4 | df-ral 3063 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦𝜑)) | |
5 | 2, 3, 4 | 3bitr4ri 304 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
6 | df-ral 3063 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
7 | 6 | albii 1822 | . 2 ⊢ (∀𝑦∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
8 | 5, 7 | bitr4i 278 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1540 ∈ wcel 2107 ∀wral 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-11 2155 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-ral 3063 |
This theorem is referenced by: moelOLD 3402 ralxpxfr2d 3635 uniiunlem 4085 iunssf 5048 iunss 5049 disjor 5129 reliun 5817 idrefALT 6113 funimass4 6957 fnssintima 7359 ralrnmpo 7547 imaeqalov 7646 ralxp3f 8123 findcard3 9285 findcard3OLD 9286 ttrclss 9715 kmlem12 10156 fimaxre3 12160 vdwmc2 16912 ramtlecl 16933 iunocv 21234 1stccn 22967 itg2leub 25252 eqscut2 27308 addsuniflem 27487 mulsuniflem 27607 mptelee 28184 nmoubi 30056 nmopub 31192 nmfnleub 31209 disjorf 31841 funcnv5mpt 31924 untuni 34709 elintfv 34767 heibor1lem 36725 ineleq 37271 inecmo 37272 pmapglbx 38688 ismnuprim 43101 setrec1lem2 47781 |
Copyright terms: Public domain | W3C validator |