MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralcom4 Structured version   Visualization version   GIF version

Theorem ralcom4 3271
Description: Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019.) (Proof shortened by Wolf Lammen, 31-Oct-2024.)
Assertion
Ref Expression
ralcom4 (∀𝑥𝐴𝑦𝜑 ↔ ∀𝑦𝑥𝐴 𝜑)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem ralcom4
StepHypRef Expression
1 19.21v 1938 . . . 4 (∀𝑦(𝑥𝐴𝜑) ↔ (𝑥𝐴 → ∀𝑦𝜑))
21albii 1818 . . 3 (∀𝑥𝑦(𝑥𝐴𝜑) ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝜑))
3 alcom 2158 . . 3 (∀𝑦𝑥(𝑥𝐴𝜑) ↔ ∀𝑥𝑦(𝑥𝐴𝜑))
4 df-ral 3051 . . 3 (∀𝑥𝐴𝑦𝜑 ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝜑))
52, 3, 43bitr4ri 304 . 2 (∀𝑥𝐴𝑦𝜑 ↔ ∀𝑦𝑥(𝑥𝐴𝜑))
6 df-ral 3051 . . 3 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
76albii 1818 . 2 (∀𝑦𝑥𝐴 𝜑 ↔ ∀𝑦𝑥(𝑥𝐴𝜑))
85, 7bitr4i 278 1 (∀𝑥𝐴𝑦𝜑 ↔ ∀𝑦𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1537  wcel 2107  wral 3050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-11 2156
This theorem depends on definitions:  df-bi 207  df-ex 1779  df-ral 3051
This theorem is referenced by:  moelOLD  3388  ralxpxfr2d  3629  uniiunlem  4067  iunssf  5024  iunss  5025  disjor  5105  reliun  5806  idrefALT  6111  funimass4  6953  fnssintima  7364  ralrnmpo  7554  imaeqalov  7654  ralxp3f  8144  findcard3  9300  findcard3OLD  9301  ttrclss  9742  kmlem12  10184  fimaxre3  12196  vdwmc2  16999  ramtlecl  17020  iunocv  21653  1stccn  23417  itg2leub  25705  eqscut2  27787  addsuniflem  27970  mulsuniflem  28111  mptelee  28840  nmoubi  30719  nmopub  31855  nmfnleub  31872  disjorf  32527  funcnv5mpt  32613  untuni  35668  elintfv  35724  heibor1lem  37775  ineleq  38314  inecmo  38315  pmapglbx  39730  ismnuprim  44270  setrec1lem2  49215
  Copyright terms: Public domain W3C validator