| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralcom4 | Structured version Visualization version GIF version | ||
| Description: Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019.) (Proof shortened by Wolf Lammen, 31-Oct-2024.) |
| Ref | Expression |
|---|---|
| ralcom4 | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.21v 1939 | . . . 4 ⊢ (∀𝑦(𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐴 → ∀𝑦𝜑)) | |
| 2 | 1 | albii 1819 | . . 3 ⊢ (∀𝑥∀𝑦(𝑥 ∈ 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦𝜑)) |
| 3 | alcom 2160 | . . 3 ⊢ (∀𝑦∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ↔ ∀𝑥∀𝑦(𝑥 ∈ 𝐴 → 𝜑)) | |
| 4 | df-ral 3045 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦𝜑)) | |
| 5 | 2, 3, 4 | 3bitr4ri 304 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
| 6 | df-ral 3045 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 7 | 6 | albii 1819 | . 2 ⊢ (∀𝑦∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
| 8 | 5, 7 | bitr4i 278 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-11 2158 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-ral 3045 |
| This theorem is referenced by: ralxpxfr2d 3612 uniiunlem 4050 iunssf 5008 iunss 5009 disjor 5089 reliun 5779 idrefALT 6084 funimass4 6925 fnssintima 7337 ralrnmpo 7528 imaeqalov 7628 ralxp3f 8116 findcard3 9229 findcard3OLD 9230 ttrclss 9673 kmlem12 10115 fimaxre3 12129 vdwmc2 16950 ramtlecl 16971 iunocv 21590 1stccn 23350 itg2leub 25635 eqscut2 27718 addsuniflem 27908 mulsuniflem 28052 mptelee 28822 nmoubi 30701 nmopub 31837 nmfnleub 31854 disjorf 32508 funcnv5mpt 32592 untuni 35696 elintfv 35752 heibor1lem 37803 ineleq 38336 inecmo 38337 pmapglbx 39763 ismnuprim 44283 setrec1lem2 49677 |
| Copyright terms: Public domain | W3C validator |