MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralcom4 Structured version   Visualization version   GIF version

Theorem ralcom4 3292
Description: Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019.) (Proof shortened by Wolf Lammen, 31-Oct-2024.)
Assertion
Ref Expression
ralcom4 (∀𝑥𝐴𝑦𝜑 ↔ ∀𝑦𝑥𝐴 𝜑)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem ralcom4
StepHypRef Expression
1 19.21v 1938 . . . 4 (∀𝑦(𝑥𝐴𝜑) ↔ (𝑥𝐴 → ∀𝑦𝜑))
21albii 1817 . . 3 (∀𝑥𝑦(𝑥𝐴𝜑) ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝜑))
3 alcom 2160 . . 3 (∀𝑦𝑥(𝑥𝐴𝜑) ↔ ∀𝑥𝑦(𝑥𝐴𝜑))
4 df-ral 3068 . . 3 (∀𝑥𝐴𝑦𝜑 ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝜑))
52, 3, 43bitr4ri 304 . 2 (∀𝑥𝐴𝑦𝜑 ↔ ∀𝑦𝑥(𝑥𝐴𝜑))
6 df-ral 3068 . . 3 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
76albii 1817 . 2 (∀𝑦𝑥𝐴 𝜑 ↔ ∀𝑦𝑥(𝑥𝐴𝜑))
85, 7bitr4i 278 1 (∀𝑥𝐴𝑦𝜑 ↔ ∀𝑦𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  wcel 2108  wral 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-11 2158
This theorem depends on definitions:  df-bi 207  df-ex 1778  df-ral 3068
This theorem is referenced by:  moelOLD  3413  ralxpxfr2d  3659  uniiunlem  4110  iunssf  5067  iunss  5068  disjor  5148  reliun  5840  idrefALT  6143  funimass4  6986  fnssintima  7398  ralrnmpo  7589  imaeqalov  7689  ralxp3f  8178  findcard3  9346  findcard3OLD  9347  ttrclss  9789  kmlem12  10231  fimaxre3  12241  vdwmc2  17026  ramtlecl  17047  iunocv  21722  1stccn  23492  itg2leub  25789  eqscut2  27869  addsuniflem  28052  mulsuniflem  28193  mptelee  28928  nmoubi  30804  nmopub  31940  nmfnleub  31957  disjorf  32601  funcnv5mpt  32686  untuni  35671  elintfv  35728  heibor1lem  37769  ineleq  38310  inecmo  38311  pmapglbx  39726  ismnuprim  44263  setrec1lem2  48780
  Copyright terms: Public domain W3C validator