| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralcom4 | Structured version Visualization version GIF version | ||
| Description: Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019.) (Proof shortened by Wolf Lammen, 31-Oct-2024.) |
| Ref | Expression |
|---|---|
| ralcom4 | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.21v 1938 | . . . 4 ⊢ (∀𝑦(𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐴 → ∀𝑦𝜑)) | |
| 2 | 1 | albii 1818 | . . 3 ⊢ (∀𝑥∀𝑦(𝑥 ∈ 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦𝜑)) |
| 3 | alcom 2158 | . . 3 ⊢ (∀𝑦∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ↔ ∀𝑥∀𝑦(𝑥 ∈ 𝐴 → 𝜑)) | |
| 4 | df-ral 3051 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦𝜑)) | |
| 5 | 2, 3, 4 | 3bitr4ri 304 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
| 6 | df-ral 3051 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 7 | 6 | albii 1818 | . 2 ⊢ (∀𝑦∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
| 8 | 5, 7 | bitr4i 278 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 ∈ wcel 2107 ∀wral 3050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-11 2156 |
| This theorem depends on definitions: df-bi 207 df-ex 1779 df-ral 3051 |
| This theorem is referenced by: moelOLD 3388 ralxpxfr2d 3629 uniiunlem 4067 iunssf 5024 iunss 5025 disjor 5105 reliun 5806 idrefALT 6111 funimass4 6953 fnssintima 7364 ralrnmpo 7554 imaeqalov 7654 ralxp3f 8144 findcard3 9300 findcard3OLD 9301 ttrclss 9742 kmlem12 10184 fimaxre3 12196 vdwmc2 16999 ramtlecl 17020 iunocv 21653 1stccn 23417 itg2leub 25705 eqscut2 27787 addsuniflem 27970 mulsuniflem 28111 mptelee 28840 nmoubi 30719 nmopub 31855 nmfnleub 31872 disjorf 32527 funcnv5mpt 32613 untuni 35668 elintfv 35724 heibor1lem 37775 ineleq 38314 inecmo 38315 pmapglbx 39730 ismnuprim 44270 setrec1lem2 49215 |
| Copyright terms: Public domain | W3C validator |