MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralcom4 Structured version   Visualization version   GIF version

Theorem ralcom4 3259
Description: Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019.) (Proof shortened by Wolf Lammen, 31-Oct-2024.)
Assertion
Ref Expression
ralcom4 (∀𝑥𝐴𝑦𝜑 ↔ ∀𝑦𝑥𝐴 𝜑)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem ralcom4
StepHypRef Expression
1 19.21v 1940 . . . 4 (∀𝑦(𝑥𝐴𝜑) ↔ (𝑥𝐴 → ∀𝑦𝜑))
21albii 1820 . . 3 (∀𝑥𝑦(𝑥𝐴𝜑) ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝜑))
3 alcom 2164 . . 3 (∀𝑦𝑥(𝑥𝐴𝜑) ↔ ∀𝑥𝑦(𝑥𝐴𝜑))
4 df-ral 3049 . . 3 (∀𝑥𝐴𝑦𝜑 ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝜑))
52, 3, 43bitr4ri 304 . 2 (∀𝑥𝐴𝑦𝜑 ↔ ∀𝑦𝑥(𝑥𝐴𝜑))
6 df-ral 3049 . . 3 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
76albii 1820 . 2 (∀𝑦𝑥𝐴 𝜑 ↔ ∀𝑦𝑥(𝑥𝐴𝜑))
85, 7bitr4i 278 1 (∀𝑥𝐴𝑦𝜑 ↔ ∀𝑦𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1539  wcel 2113  wral 3048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-11 2162
This theorem depends on definitions:  df-bi 207  df-ex 1781  df-ral 3049
This theorem is referenced by:  ralxpxfr2d  3597  uniiunlem  4036  iunssf  4995  iunssfOLD  4996  iunss  4997  iunssOLD  4998  disjor  5077  idrefALT  6067  funimass4  6895  fnssintima  7305  ralrnmpo  7494  imaeqalov  7594  ralxp3f  8076  findcard3  9178  ttrclss  9621  kmlem12  10064  fimaxre3  12079  vdwmc2  16898  ramtlecl  16919  iunocv  21627  1stccn  23398  itg2leub  25682  eqscut2  27767  addsuniflem  27964  mulsuniflem  28108  mpteleeOLD  28894  nmoubi  30773  nmopub  31909  nmfnleub  31926  disjorf  32580  funcnv5mpt  32672  untuni  35825  elintfv  35881  heibor1lem  37922  ineleq  38459  inecmo  38460  pmapglbx  39941  ismnuprim  44451  setrec1lem2  49849
  Copyright terms: Public domain W3C validator