![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralcom4 | Structured version Visualization version GIF version |
Description: Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019.) (Proof shortened by Wolf Lammen, 31-Oct-2024.) |
Ref | Expression |
---|---|
ralcom4 | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.21v 1938 | . . . 4 ⊢ (∀𝑦(𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐴 → ∀𝑦𝜑)) | |
2 | 1 | albii 1817 | . . 3 ⊢ (∀𝑥∀𝑦(𝑥 ∈ 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦𝜑)) |
3 | alcom 2160 | . . 3 ⊢ (∀𝑦∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ↔ ∀𝑥∀𝑦(𝑥 ∈ 𝐴 → 𝜑)) | |
4 | df-ral 3068 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦𝜑)) | |
5 | 2, 3, 4 | 3bitr4ri 304 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
6 | df-ral 3068 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
7 | 6 | albii 1817 | . 2 ⊢ (∀𝑦∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
8 | 5, 7 | bitr4i 278 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 ∈ wcel 2108 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-11 2158 |
This theorem depends on definitions: df-bi 207 df-ex 1778 df-ral 3068 |
This theorem is referenced by: moelOLD 3413 ralxpxfr2d 3659 uniiunlem 4110 iunssf 5067 iunss 5068 disjor 5148 reliun 5840 idrefALT 6143 funimass4 6986 fnssintima 7398 ralrnmpo 7589 imaeqalov 7689 ralxp3f 8178 findcard3 9346 findcard3OLD 9347 ttrclss 9789 kmlem12 10231 fimaxre3 12241 vdwmc2 17026 ramtlecl 17047 iunocv 21722 1stccn 23492 itg2leub 25789 eqscut2 27869 addsuniflem 28052 mulsuniflem 28193 mptelee 28928 nmoubi 30804 nmopub 31940 nmfnleub 31957 disjorf 32601 funcnv5mpt 32686 untuni 35671 elintfv 35728 heibor1lem 37769 ineleq 38310 inecmo 38311 pmapglbx 39726 ismnuprim 44263 setrec1lem2 48780 |
Copyright terms: Public domain | W3C validator |