Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralcom4 | Structured version Visualization version GIF version |
Description: Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019.) (Proof shortened by Wolf Lammen, 31-Oct-2024.) |
Ref | Expression |
---|---|
ralcom4 | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.21v 1940 | . . . 4 ⊢ (∀𝑦(𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐴 → ∀𝑦𝜑)) | |
2 | 1 | albii 1819 | . . 3 ⊢ (∀𝑥∀𝑦(𝑥 ∈ 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦𝜑)) |
3 | alcom 2154 | . . 3 ⊢ (∀𝑦∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ↔ ∀𝑥∀𝑦(𝑥 ∈ 𝐴 → 𝜑)) | |
4 | df-ral 3063 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦𝜑)) | |
5 | 2, 3, 4 | 3bitr4ri 304 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
6 | df-ral 3063 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
7 | 6 | albii 1819 | . 2 ⊢ (∀𝑦∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
8 | 5, 7 | bitr4i 278 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∈ wcel 2104 ∀wral 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-11 2152 |
This theorem depends on definitions: df-bi 206 df-ex 1780 df-ral 3063 |
This theorem is referenced by: moelOLD 3378 ralxpxfr2d 3581 uniiunlem 4025 iunssf 4981 iunss 4982 disjor 5061 reliun 5738 idrefALT 6031 funimass4 6866 ralrnmpo 7444 findcard3 9105 ttrclss 9526 kmlem12 9967 fimaxre3 11971 vdwmc2 16729 ramtlecl 16750 iunocv 20935 1stccn 22663 itg2leub 24948 mptelee 27312 nmoubi 29183 nmopub 30319 nmfnleub 30336 disjorf 30967 funcnv5mpt 31054 untuni 33699 fnssintima 33725 ralxp3f 33734 elintfv 33787 eqscut2 34049 heibor1lem 36015 ineleq 36567 inecmo 36568 pmapglbx 37983 ismnuprim 42125 setrec1lem2 46638 |
Copyright terms: Public domain | W3C validator |