| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexcom4 | Structured version Visualization version GIF version | ||
| Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019.) |
| Ref | Expression |
|---|---|
| rexcom4 | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exdistr 1955 | . 2 ⊢ (∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) | |
| 2 | df-rex 3055 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | 2 | exbii 1849 | . . 3 ⊢ (∃𝑦∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 4 | excom 2164 | . . 3 ⊢ (∃𝑦∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 5 | 3, 4 | bitri 275 | . 2 ⊢ (∃𝑦∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 6 | df-rex 3055 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) | |
| 7 | 1, 5, 6 | 3bitr4ri 304 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1780 ∈ wcel 2110 ∃wrex 3054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-11 2159 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-rex 3055 |
| This theorem is referenced by: rexcom4a 3260 2ex2rexrot 3265 reuind 3710 uni0b 4883 iuncom4 4948 dfiun2g 4978 iunn0 5013 iunxiun 5043 iinexg 5284 inuni 5286 iunopab 5497 xpiundi 5685 xpiundir 5686 cnvuni 5824 dmiun 5851 dmopab2rex 5855 elsnres 5967 rniun 6091 xpdifid 6112 imaco 6195 coiun 6200 abrexco 7173 imaiun 7174 fliftf 7244 imaeqsexvOLD 7292 imaeqexov 7579 fiun 7870 f1iun 7871 oprabrexex2 7905 releldm2 7970 oarec 8472 omeu 8495 eroveu 8731 brttrcl2 9599 dfac5lem2 10007 genpass 10892 supaddc 12081 supadd 12082 supmul1 12083 supmullem2 12085 supmul 12086 pceu 16750 4sqlem12 16860 mreiincl 17490 psgneu 19411 ntreq0 22985 unisngl 23435 metrest 24432 metuel2 24473 nosupno 27635 nosupfv 27638 noinfno 27650 noinffv 27653 elold 27807 lrrecfr 27879 sleadd1 27925 addsuniflem 27937 addsasslem1 27939 addsasslem2 27940 mulsuniflem 28081 addsdilem1 28083 addsdilem2 28084 mulsasslem1 28095 mulsasslem2 28096 renegscl 28393 readdscl 28394 remulscl 28397 istrkg2ld 28431 fpwrelmapffslem 32705 omssubaddlem 34302 omssubadd 34303 bnj906 34932 satfdm 35381 dmopab3rexdif 35417 rexxfr3dALT 35651 bj-elsngl 36981 bj-restn0 37103 ismblfin 37680 itg2addnclem3 37692 sdclem1 37762 eldmqs1cossres 38676 prter2 38899 lshpsmreu 39127 islpln5 39553 islvol5 39597 cdlemftr3 40583 mapdpglem3 41693 hdmapglem7a 41945 diophrex 42787 imaiun1 43663 coiun1 43664 grumnudlem 44297 upbdrech 45325 usgrgrtrirex 47960 |
| Copyright terms: Public domain | W3C validator |