| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexcom4 | Structured version Visualization version GIF version | ||
| Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019.) |
| Ref | Expression |
|---|---|
| rexcom4 | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exdistr 1954 | . 2 ⊢ (∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) | |
| 2 | df-rex 3054 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | 2 | exbii 1848 | . . 3 ⊢ (∃𝑦∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 4 | excom 2163 | . . 3 ⊢ (∃𝑦∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 5 | 3, 4 | bitri 275 | . 2 ⊢ (∃𝑦∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 6 | df-rex 3054 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) | |
| 7 | 1, 5, 6 | 3bitr4ri 304 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-11 2158 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: rexcom4a 3267 2ex2rexrot 3273 reuind 3724 uni0b 4897 iuncom4 4964 dfiun2g 4994 dfiun2gOLD 4995 iunn0 5031 iunxiun 5061 iinexg 5303 inuni 5305 iunopab 5519 iunopabOLD 5520 xpiundi 5709 xpiundir 5710 cnvuni 5850 dmiun 5877 dmopab2rex 5881 elsnres 5992 rniun 6120 xpdifid 6141 imaco 6224 coiun 6229 abrexco 7218 imaiun 7219 fliftf 7290 imaeqsexvOLD 7338 imaeqexov 7627 fiun 7921 f1iun 7922 oprabrexex2 7957 releldm2 8022 oarec 8526 omeu 8549 eroveu 8785 brttrcl2 9667 dfac5lem2 10077 genpass 10962 supaddc 12150 supadd 12151 supmul1 12152 supmullem2 12154 supmul 12155 pceu 16817 4sqlem12 16927 mreiincl 17557 psgneu 19436 ntreq0 22964 unisngl 23414 metrest 24412 metuel2 24453 nosupno 27615 nosupfv 27618 noinfno 27630 noinffv 27633 elold 27781 lrrecfr 27850 sleadd1 27896 addsuniflem 27908 addsasslem1 27910 addsasslem2 27911 mulsuniflem 28052 addsdilem1 28054 addsdilem2 28055 mulsasslem1 28066 mulsasslem2 28067 renegscl 28349 readdscl 28350 remulscl 28353 istrkg2ld 28387 fpwrelmapffslem 32655 omssubaddlem 34290 omssubadd 34291 bnj906 34920 satfdm 35356 dmopab3rexdif 35392 rexxfr3dALT 35626 bj-elsngl 36956 bj-restn0 37078 ismblfin 37655 itg2addnclem3 37667 sdclem1 37737 eldmqs1cossres 38651 prter2 38874 lshpsmreu 39102 islpln5 39529 islvol5 39573 cdlemftr3 40559 mapdpglem3 41669 hdmapglem7a 41921 diophrex 42763 imaiun1 43640 coiun1 43641 grumnudlem 44274 upbdrech 45303 usgrgrtrirex 47949 |
| Copyright terms: Public domain | W3C validator |