![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexcom4 | Structured version Visualization version GIF version |
Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019.) |
Ref | Expression |
---|---|
rexcom4 | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exdistr 1954 | . 2 ⊢ (∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) | |
2 | df-rex 3077 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | 2 | exbii 1846 | . . 3 ⊢ (∃𝑦∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
4 | excom 2163 | . . 3 ⊢ (∃𝑦∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
5 | 3, 4 | bitri 275 | . 2 ⊢ (∃𝑦∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) |
6 | df-rex 3077 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) | |
7 | 1, 5, 6 | 3bitr4ri 304 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1777 ∈ wcel 2108 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-11 2158 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-rex 3077 |
This theorem is referenced by: rexcomOLD 3297 rexcom4a 3298 2ex2rexrot 3304 reuind 3775 uni0b 4957 iuncom4 5023 dfiun2g 5053 dfiun2gOLD 5054 iunn0 5090 iunxiun 5120 iinexg 5366 inuni 5368 iunopab 5578 iunopabOLD 5579 xpiundi 5770 xpiundir 5771 cnvuni 5911 dmiun 5938 dmopab2rex 5942 elsnres 6050 rniun 6179 xpdifid 6199 imaco 6282 coiun 6287 abrexco 7281 imaiun 7282 fliftf 7351 imaeqsexvOLD 7399 imaeqexov 7688 fiun 7983 f1iun 7984 oprabrexex2 8019 releldm2 8084 oarec 8618 omeu 8641 eroveu 8870 brttrcl2 9783 dfac5lem2 10193 genpass 11078 supaddc 12262 supadd 12263 supmul1 12264 supmullem2 12266 supmul 12267 pceu 16893 4sqlem12 17003 mreiincl 17654 psgneu 19548 ntreq0 23106 unisngl 23556 metrest 24558 metuel2 24599 nosupno 27766 nosupfv 27769 noinfno 27781 noinffv 27784 elold 27926 lrrecfr 27994 sleadd1 28040 addsuniflem 28052 addsasslem1 28054 addsasslem2 28055 mulsuniflem 28193 addsdilem1 28195 addsdilem2 28196 mulsasslem1 28207 mulsasslem2 28208 renegscl 28448 readdscl 28449 remulscl 28452 istrkg2ld 28486 fpwrelmapffslem 32746 omssubaddlem 34264 omssubadd 34265 bnj906 34906 satfdm 35337 dmopab3rexdif 35373 rexxfr3dALT 35607 bj-elsngl 36934 bj-restn0 37056 ismblfin 37621 itg2addnclem3 37633 sdclem1 37703 eldmqs1cossres 38615 prter2 38837 lshpsmreu 39065 islpln5 39492 islvol5 39536 cdlemftr3 40522 mapdpglem3 41632 hdmapglem7a 41884 diophrex 42731 imaiun1 43613 coiun1 43614 grumnudlem 44254 upbdrech 45220 usgrgrtrirex 47799 |
Copyright terms: Public domain | W3C validator |