![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexcom4 | Structured version Visualization version GIF version |
Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
rexcom4 | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexcom 3285 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ V 𝜑 ↔ ∃𝑦 ∈ V ∃𝑥 ∈ 𝐴 𝜑) | |
2 | rexv 3422 | . . 3 ⊢ (∃𝑦 ∈ V 𝜑 ↔ ∃𝑦𝜑) | |
3 | 2 | rexbii 3224 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ V 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦𝜑) |
4 | rexv 3422 | . 2 ⊢ (∃𝑦 ∈ V ∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) | |
5 | 1, 3, 4 | 3bitr3i 293 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∃wex 1823 ∃wrex 3091 Vcvv 3398 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-v 3400 |
This theorem is referenced by: rexcom4a 3428 reuind 3628 uni0b 4698 iuncom4 4761 dfiun2g 4785 iunn0 4813 iunxiun 4842 iinexg 5058 inuni 5060 iunopab 5249 xpiundi 5419 xpiundir 5420 cnvuni 5554 dmiun 5578 elresOLD 5685 elsnres 5686 rniun 5797 xpdifid 5816 imaco 5894 coiun 5899 abrexco 6774 imaiun 6775 fliftf 6837 fun11iun 7405 oprabrexex2 7435 releldm2 7497 oarec 7926 omeu 7949 eroveu 8126 dfac5lem2 9280 genpass 10166 supaddc 11344 supadd 11345 supmul1 11346 supmullem2 11348 supmul 11349 pceu 15955 4sqlem12 16064 mreiincl 16642 psgneu 18310 ntreq0 21289 unisngl 21739 metrest 22737 metuel2 22778 istrkg2ld 25811 fpwrelmapffslem 30073 omssubaddlem 30959 omssubadd 30960 bnj906 31599 nosupno 32438 nosupfv 32441 bj-elsngl 33528 bj-restn0 33616 ismblfin 34078 itg2addnclem3 34090 sdclem1 34165 prter2 35037 lshpsmreu 35265 islpln5 35691 islvol5 35735 cdlemftr3 36721 mapdpglem3 37831 hdmapglem7a 38083 diophrex 38303 imaiun1 38904 coiun1 38905 upbdrech 40432 |
Copyright terms: Public domain | W3C validator |