| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexcom4 | Structured version Visualization version GIF version | ||
| Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019.) |
| Ref | Expression |
|---|---|
| rexcom4 | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exdistr 1955 | . 2 ⊢ (∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) | |
| 2 | df-rex 3059 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | 2 | exbii 1849 | . . 3 ⊢ (∃𝑦∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 4 | excom 2167 | . . 3 ⊢ (∃𝑦∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 5 | 3, 4 | bitri 275 | . 2 ⊢ (∃𝑦∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 6 | df-rex 3059 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) | |
| 7 | 1, 5, 6 | 3bitr4ri 304 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1780 ∈ wcel 2113 ∃wrex 3058 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-11 2162 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-rex 3059 |
| This theorem is referenced by: rexcom4a 3264 2ex2rexrot 3269 reuind 3709 uni0b 4886 iuncom4 4952 dfiun2g 4982 iunn0 5019 iunxiun 5049 iinexg 5290 inuni 5292 iunopab 5504 xpiundi 5692 xpiundir 5693 cnvuni 5833 dmiun 5860 dmopab2rex 5864 elsnres 5977 rniun 6102 xpdifid 6123 imaco 6206 coiun 6212 abrexco 7187 imaiun 7188 fliftf 7258 imaeqsexvOLD 7306 imaeqexov 7593 fiun 7884 f1iun 7885 oprabrexex2 7919 releldm2 7984 oarec 8486 omeu 8509 eroveu 8745 brttrcl2 9614 dfac5lem2 10025 genpass 10910 supaddc 12099 supadd 12100 supmul1 12101 supmullem2 12103 supmul 12104 pceu 16768 4sqlem12 16878 mreiincl 17508 psgneu 19428 ntreq0 23002 unisngl 23452 metrest 24449 metuel2 24490 nosupno 27652 nosupfv 27655 noinfno 27667 noinffv 27670 elold 27824 lrrecfr 27896 sleadd1 27942 addsuniflem 27954 addsasslem1 27956 addsasslem2 27957 mulsuniflem 28098 addsdilem1 28100 addsdilem2 28101 mulsasslem1 28112 mulsasslem2 28113 renegscl 28410 readdscl 28411 remulscl 28414 istrkg2ld 28448 fpwrelmapffslem 32726 omssubaddlem 34323 omssubadd 34324 bnj906 34953 satfdm 35424 dmopab3rexdif 35460 rexxfr3dALT 35694 bj-elsngl 37023 bj-restn0 37145 ismblfin 37711 itg2addnclem3 37723 sdclem1 37793 eldmqs1cossres 38767 prter2 38990 lshpsmreu 39218 islpln5 39644 islvol5 39688 cdlemftr3 40674 mapdpglem3 41784 hdmapglem7a 42036 diophrex 42882 imaiun1 43758 coiun1 43759 grumnudlem 44392 upbdrech 45420 usgrgrtrirex 48064 |
| Copyright terms: Public domain | W3C validator |