Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexcom4 | Structured version Visualization version GIF version |
Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019.) |
Ref | Expression |
---|---|
rexcom4 | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exdistr 1959 | . 2 ⊢ (∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) | |
2 | df-rex 3069 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | 2 | exbii 1851 | . . 3 ⊢ (∃𝑦∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
4 | excom 2164 | . . 3 ⊢ (∃𝑦∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
5 | 3, 4 | bitri 274 | . 2 ⊢ (∃𝑦∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) |
6 | df-rex 3069 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) | |
7 | 1, 5, 6 | 3bitr4ri 303 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∃wex 1783 ∈ wcel 2108 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-11 2156 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-rex 3069 |
This theorem is referenced by: 2ex2rexrot 3180 rexcom4a 3181 rexcom 3281 reuind 3683 uni0b 4864 iuncom4 4929 dfiun2g 4957 iunn0 4992 iunxiun 5022 iinexg 5260 inuni 5262 iunopab 5465 xpiundi 5648 xpiundir 5649 cnvuni 5784 dmiun 5811 dmopab2rex 5815 elsnres 5920 rniun 6040 xpdifid 6060 imaco 6144 coiun 6149 abrexco 7099 imaiun 7100 fliftf 7166 fiun 7759 f1iun 7760 oprabrexex2 7794 releldm2 7857 oarec 8355 omeu 8378 eroveu 8559 dfac5lem2 9811 genpass 10696 supaddc 11872 supadd 11873 supmul1 11874 supmullem2 11876 supmul 11877 pceu 16475 4sqlem12 16585 mreiincl 17222 psgneu 19029 ntreq0 22136 unisngl 22586 metrest 23586 metuel2 23627 istrkg2ld 26725 fpwrelmapffslem 30969 omssubaddlem 32166 omssubadd 32167 bnj906 32810 satfdm 33231 dmopab3rexdif 33267 imaeqsexv 33593 brttrcl2 33700 nosupno 33833 nosupfv 33836 noinfno 33848 noinffv 33851 elold 33980 lrrecfr 34027 bj-elsngl 35085 bj-restn0 35188 ismblfin 35745 itg2addnclem3 35757 sdclem1 35828 eldmqs1cossres 36698 prter2 36822 lshpsmreu 37050 islpln5 37476 islvol5 37520 cdlemftr3 38506 mapdpglem3 39616 hdmapglem7a 39868 diophrex 40513 imaiun1 41148 coiun1 41149 grumnudlem 41792 upbdrech 42734 |
Copyright terms: Public domain | W3C validator |