| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexcom4 | Structured version Visualization version GIF version | ||
| Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019.) |
| Ref | Expression |
|---|---|
| rexcom4 | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exdistr 1954 | . 2 ⊢ (∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) | |
| 2 | df-rex 3061 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | 2 | exbii 1848 | . . 3 ⊢ (∃𝑦∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 4 | excom 2162 | . . 3 ⊢ (∃𝑦∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 5 | 3, 4 | bitri 275 | . 2 ⊢ (∃𝑦∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 6 | df-rex 3061 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) | |
| 7 | 1, 5, 6 | 3bitr4ri 304 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2108 ∃wrex 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-11 2157 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3061 |
| This theorem is referenced by: rexcomOLD 3272 rexcom4a 3273 2ex2rexrot 3279 reuind 3736 uni0b 4909 iuncom4 4976 dfiun2g 5006 dfiun2gOLD 5007 iunn0 5043 iunxiun 5073 iinexg 5318 inuni 5320 iunopab 5534 iunopabOLD 5535 xpiundi 5725 xpiundir 5726 cnvuni 5866 dmiun 5893 dmopab2rex 5897 elsnres 6008 rniun 6136 xpdifid 6157 imaco 6240 coiun 6245 abrexco 7236 imaiun 7237 fliftf 7308 imaeqsexvOLD 7356 imaeqexov 7645 fiun 7941 f1iun 7942 oprabrexex2 7977 releldm2 8042 oarec 8574 omeu 8597 eroveu 8826 brttrcl2 9728 dfac5lem2 10138 genpass 11023 supaddc 12209 supadd 12210 supmul1 12211 supmullem2 12213 supmul 12214 pceu 16866 4sqlem12 16976 mreiincl 17608 psgneu 19487 ntreq0 23015 unisngl 23465 metrest 24463 metuel2 24504 nosupno 27667 nosupfv 27670 noinfno 27682 noinffv 27685 elold 27833 lrrecfr 27902 sleadd1 27948 addsuniflem 27960 addsasslem1 27962 addsasslem2 27963 mulsuniflem 28104 addsdilem1 28106 addsdilem2 28107 mulsasslem1 28118 mulsasslem2 28119 renegscl 28401 readdscl 28402 remulscl 28405 istrkg2ld 28439 fpwrelmapffslem 32709 omssubaddlem 34331 omssubadd 34332 bnj906 34961 satfdm 35391 dmopab3rexdif 35427 rexxfr3dALT 35661 bj-elsngl 36986 bj-restn0 37108 ismblfin 37685 itg2addnclem3 37697 sdclem1 37767 eldmqs1cossres 38677 prter2 38899 lshpsmreu 39127 islpln5 39554 islvol5 39598 cdlemftr3 40584 mapdpglem3 41694 hdmapglem7a 41946 diophrex 42798 imaiun1 43675 coiun1 43676 grumnudlem 44309 upbdrech 45334 usgrgrtrirex 47962 |
| Copyright terms: Public domain | W3C validator |