| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexcom4 | Structured version Visualization version GIF version | ||
| Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019.) |
| Ref | Expression |
|---|---|
| rexcom4 | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exdistr 1954 | . 2 ⊢ (∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) | |
| 2 | df-rex 3055 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | 2 | exbii 1848 | . . 3 ⊢ (∃𝑦∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 4 | excom 2163 | . . 3 ⊢ (∃𝑦∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 5 | 3, 4 | bitri 275 | . 2 ⊢ (∃𝑦∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 6 | df-rex 3055 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) | |
| 7 | 1, 5, 6 | 3bitr4ri 304 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ∃wrex 3054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-11 2158 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3055 |
| This theorem is referenced by: rexcomOLD 3268 rexcom4a 3269 2ex2rexrot 3275 reuind 3727 uni0b 4900 iuncom4 4967 dfiun2g 4997 dfiun2gOLD 4998 iunn0 5034 iunxiun 5064 iinexg 5306 inuni 5308 iunopab 5522 iunopabOLD 5523 xpiundi 5712 xpiundir 5713 cnvuni 5853 dmiun 5880 dmopab2rex 5884 elsnres 5995 rniun 6123 xpdifid 6144 imaco 6227 coiun 6232 abrexco 7221 imaiun 7222 fliftf 7293 imaeqsexvOLD 7341 imaeqexov 7630 fiun 7924 f1iun 7925 oprabrexex2 7960 releldm2 8025 oarec 8529 omeu 8552 eroveu 8788 brttrcl2 9674 dfac5lem2 10084 genpass 10969 supaddc 12157 supadd 12158 supmul1 12159 supmullem2 12161 supmul 12162 pceu 16824 4sqlem12 16934 mreiincl 17564 psgneu 19443 ntreq0 22971 unisngl 23421 metrest 24419 metuel2 24460 nosupno 27622 nosupfv 27625 noinfno 27637 noinffv 27640 elold 27788 lrrecfr 27857 sleadd1 27903 addsuniflem 27915 addsasslem1 27917 addsasslem2 27918 mulsuniflem 28059 addsdilem1 28061 addsdilem2 28062 mulsasslem1 28073 mulsasslem2 28074 renegscl 28356 readdscl 28357 remulscl 28360 istrkg2ld 28394 fpwrelmapffslem 32662 omssubaddlem 34297 omssubadd 34298 bnj906 34927 satfdm 35363 dmopab3rexdif 35399 rexxfr3dALT 35633 bj-elsngl 36963 bj-restn0 37085 ismblfin 37662 itg2addnclem3 37674 sdclem1 37744 eldmqs1cossres 38658 prter2 38881 lshpsmreu 39109 islpln5 39536 islvol5 39580 cdlemftr3 40566 mapdpglem3 41676 hdmapglem7a 41928 diophrex 42770 imaiun1 43647 coiun1 43648 grumnudlem 44281 upbdrech 45310 usgrgrtrirex 47953 |
| Copyright terms: Public domain | W3C validator |