![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexcom4 | Structured version Visualization version GIF version |
Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019.) |
Ref | Expression |
---|---|
rexcom4 | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exdistr 1958 | . 2 ⊢ (∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) | |
2 | df-rex 3071 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | 2 | exbii 1850 | . . 3 ⊢ (∃𝑦∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
4 | excom 2162 | . . 3 ⊢ (∃𝑦∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
5 | 3, 4 | bitri 274 | . 2 ⊢ (∃𝑦∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) |
6 | df-rex 3071 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) | |
7 | 1, 5, 6 | 3bitr4ri 303 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1781 ∈ wcel 2106 ∃wrex 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-11 2154 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-rex 3071 |
This theorem is referenced by: rexcomOLD 3288 rexcom4a 3289 2ex2rexrot 3295 reuind 3749 uni0b 4937 iuncom4 5005 dfiun2g 5033 dfiun2gOLD 5034 iunn0 5070 iunxiun 5100 iinexg 5341 inuni 5343 iunopab 5559 iunopabOLD 5560 xpiundi 5746 xpiundir 5747 cnvuni 5886 dmiun 5913 dmopab2rex 5917 elsnres 6021 rniun 6147 xpdifid 6167 imaco 6250 coiun 6255 abrexco 7242 imaiun 7243 fliftf 7311 imaeqsexv 7359 imaeqexov 7644 fiun 7928 f1iun 7929 oprabrexex2 7964 releldm2 8028 oarec 8561 omeu 8584 eroveu 8805 brttrcl2 9708 dfac5lem2 10118 genpass 11003 supaddc 12180 supadd 12181 supmul1 12182 supmullem2 12184 supmul 12185 pceu 16778 4sqlem12 16888 mreiincl 17539 psgneu 19373 ntreq0 22580 unisngl 23030 metrest 24032 metuel2 24073 nosupno 27203 nosupfv 27206 noinfno 27218 noinffv 27221 elold 27361 lrrecfr 27424 sleadd1 27469 addsuniflem 27481 addsasslem1 27483 addsasslem2 27484 mulsuniflem 27601 addsdilem1 27603 addsdilem2 27604 mulsasslem1 27615 mulsasslem2 27616 istrkg2ld 27708 fpwrelmapffslem 31952 omssubaddlem 33293 omssubadd 33294 bnj906 33936 satfdm 34355 dmopab3rexdif 34391 bj-elsngl 35844 bj-restn0 35966 ismblfin 36524 itg2addnclem3 36536 sdclem1 36606 eldmqs1cossres 37524 prter2 37746 lshpsmreu 37974 islpln5 38401 islvol5 38445 cdlemftr3 39431 mapdpglem3 40541 hdmapglem7a 40793 diophrex 41503 imaiun1 42392 coiun1 42393 grumnudlem 43034 upbdrech 44005 |
Copyright terms: Public domain | W3C validator |