![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexcom4 | Structured version Visualization version GIF version |
Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019.) |
Ref | Expression |
---|---|
rexcom4 | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exdistr 1956 | . 2 ⊢ (∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) | |
2 | df-rex 3069 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | 2 | exbii 1848 | . . 3 ⊢ (∃𝑦∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
4 | excom 2160 | . . 3 ⊢ (∃𝑦∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
5 | 3, 4 | bitri 274 | . 2 ⊢ (∃𝑦∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) |
6 | df-rex 3069 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) | |
7 | 1, 5, 6 | 3bitr4ri 303 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∃wex 1779 ∈ wcel 2104 ∃wrex 3068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-11 2152 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1780 df-rex 3069 |
This theorem is referenced by: rexcomOLD 3286 rexcom4a 3287 2ex2rexrot 3293 reuind 3748 uni0b 4936 iuncom4 5004 dfiun2g 5032 dfiun2gOLD 5033 iunn0 5069 iunxiun 5099 iinexg 5340 inuni 5342 iunopab 5558 iunopabOLD 5559 xpiundi 5745 xpiundir 5746 cnvuni 5885 dmiun 5912 dmopab2rex 5916 elsnres 6020 rniun 6146 xpdifid 6166 imaco 6249 coiun 6254 abrexco 7245 imaiun 7246 fliftf 7314 imaeqsexv 7362 imaeqexov 7647 fiun 7931 f1iun 7932 oprabrexex2 7967 releldm2 8031 oarec 8564 omeu 8587 eroveu 8808 brttrcl2 9711 dfac5lem2 10121 genpass 11006 supaddc 12185 supadd 12186 supmul1 12187 supmullem2 12189 supmul 12190 pceu 16783 4sqlem12 16893 mreiincl 17544 psgneu 19415 ntreq0 22801 unisngl 23251 metrest 24253 metuel2 24294 nosupno 27442 nosupfv 27445 noinfno 27457 noinffv 27460 elold 27601 lrrecfr 27665 sleadd1 27711 addsuniflem 27723 addsasslem1 27725 addsasslem2 27726 mulsuniflem 27843 addsdilem1 27845 addsdilem2 27846 mulsasslem1 27857 mulsasslem2 27858 istrkg2ld 27978 fpwrelmapffslem 32224 omssubaddlem 33596 omssubadd 33597 bnj906 34239 satfdm 34658 dmopab3rexdif 34694 bj-elsngl 36152 bj-restn0 36274 ismblfin 36832 itg2addnclem3 36844 sdclem1 36914 eldmqs1cossres 37832 prter2 38054 lshpsmreu 38282 islpln5 38709 islvol5 38753 cdlemftr3 39739 mapdpglem3 40849 hdmapglem7a 41101 diophrex 41815 imaiun1 42704 coiun1 42705 grumnudlem 43346 upbdrech 44313 |
Copyright terms: Public domain | W3C validator |