Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexcom4 | Structured version Visualization version GIF version |
Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019.) |
Ref | Expression |
---|---|
rexcom4 | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exdistr 1959 | . 2 ⊢ (∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) | |
2 | df-rex 3071 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | 2 | exbii 1851 | . . 3 ⊢ (∃𝑦∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
4 | excom 2163 | . . 3 ⊢ (∃𝑦∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
5 | 3, 4 | bitri 274 | . 2 ⊢ (∃𝑦∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) |
6 | df-rex 3071 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) | |
7 | 1, 5, 6 | 3bitr4ri 304 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1782 ∈ wcel 2107 ∃wrex 3066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-11 2155 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-rex 3071 |
This theorem is referenced by: 2ex2rexrot 3236 rexcom4a 3237 rexcomOLD 3286 reuind 3689 uni0b 4868 iuncom4 4933 dfiun2g 4961 dfiun2gOLD 4962 iunn0 4997 iunxiun 5027 iinexg 5266 inuni 5268 iunopab 5473 iunopabOLD 5474 xpiundi 5658 xpiundir 5659 cnvuni 5798 dmiun 5825 dmopab2rex 5829 elsnres 5934 rniun 6056 xpdifid 6076 imaco 6159 coiun 6164 abrexco 7126 imaiun 7127 fliftf 7195 fiun 7794 f1iun 7795 oprabrexex2 7830 releldm2 7893 oarec 8402 omeu 8425 eroveu 8610 brttrcl2 9481 dfac5lem2 9889 genpass 10774 supaddc 11951 supadd 11952 supmul1 11953 supmullem2 11955 supmul 11956 pceu 16556 4sqlem12 16666 mreiincl 17314 psgneu 19123 ntreq0 22237 unisngl 22687 metrest 23689 metuel2 23730 istrkg2ld 26830 fpwrelmapffslem 31076 omssubaddlem 32275 omssubadd 32276 bnj906 32919 satfdm 33340 dmopab3rexdif 33376 imaeqsexv 33699 nosupno 33915 nosupfv 33918 noinfno 33930 noinffv 33933 elold 34062 lrrecfr 34109 bj-elsngl 35167 bj-restn0 35270 ismblfin 35827 itg2addnclem3 35839 sdclem1 35910 eldmqs1cossres 36778 prter2 36902 lshpsmreu 37130 islpln5 37556 islvol5 37600 cdlemftr3 38586 mapdpglem3 39696 hdmapglem7a 39948 diophrex 40604 imaiun1 41266 coiun1 41267 grumnudlem 41910 upbdrech 42851 |
Copyright terms: Public domain | W3C validator |