| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexcom4 | Structured version Visualization version GIF version | ||
| Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019.) |
| Ref | Expression |
|---|---|
| rexcom4 | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exdistr 1954 | . 2 ⊢ (∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) | |
| 2 | df-rex 3054 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | 2 | exbii 1848 | . . 3 ⊢ (∃𝑦∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 4 | excom 2163 | . . 3 ⊢ (∃𝑦∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 5 | 3, 4 | bitri 275 | . 2 ⊢ (∃𝑦∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 6 | df-rex 3054 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) | |
| 7 | 1, 5, 6 | 3bitr4ri 304 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-11 2158 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: rexcom4a 3259 2ex2rexrot 3265 reuind 3715 uni0b 4887 iuncom4 4953 dfiun2g 4983 iunn0 5019 iunxiun 5049 iinexg 5290 inuni 5292 iunopab 5506 xpiundi 5694 xpiundir 5695 cnvuni 5833 dmiun 5860 dmopab2rex 5864 elsnres 5976 rniun 6100 xpdifid 6121 imaco 6204 coiun 6209 abrexco 7184 imaiun 7185 fliftf 7256 imaeqsexvOLD 7304 imaeqexov 7591 fiun 7885 f1iun 7886 oprabrexex2 7920 releldm2 7985 oarec 8487 omeu 8510 eroveu 8746 brttrcl2 9629 dfac5lem2 10037 genpass 10922 supaddc 12110 supadd 12111 supmul1 12112 supmullem2 12114 supmul 12115 pceu 16776 4sqlem12 16886 mreiincl 17516 psgneu 19403 ntreq0 22980 unisngl 23430 metrest 24428 metuel2 24469 nosupno 27631 nosupfv 27634 noinfno 27646 noinffv 27649 elold 27801 lrrecfr 27873 sleadd1 27919 addsuniflem 27931 addsasslem1 27933 addsasslem2 27934 mulsuniflem 28075 addsdilem1 28077 addsdilem2 28078 mulsasslem1 28089 mulsasslem2 28090 renegscl 28385 readdscl 28386 remulscl 28389 istrkg2ld 28423 fpwrelmapffslem 32688 omssubaddlem 34266 omssubadd 34267 bnj906 34896 satfdm 35341 dmopab3rexdif 35377 rexxfr3dALT 35611 bj-elsngl 36941 bj-restn0 37063 ismblfin 37640 itg2addnclem3 37652 sdclem1 37722 eldmqs1cossres 38636 prter2 38859 lshpsmreu 39087 islpln5 39514 islvol5 39558 cdlemftr3 40544 mapdpglem3 41654 hdmapglem7a 41906 diophrex 42748 imaiun1 43624 coiun1 43625 grumnudlem 44258 upbdrech 45287 usgrgrtrirex 47933 |
| Copyright terms: Public domain | W3C validator |