| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexcom4 | Structured version Visualization version GIF version | ||
| Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019.) |
| Ref | Expression |
|---|---|
| rexcom4 | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exdistr 1953 | . 2 ⊢ (∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) | |
| 2 | df-rex 3060 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | 2 | exbii 1847 | . . 3 ⊢ (∃𝑦∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 4 | excom 2161 | . . 3 ⊢ (∃𝑦∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 5 | 3, 4 | bitri 275 | . 2 ⊢ (∃𝑦∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 6 | df-rex 3060 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) | |
| 7 | 1, 5, 6 | 3bitr4ri 304 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1778 ∈ wcel 2107 ∃wrex 3059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-11 2156 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-rex 3060 |
| This theorem is referenced by: rexcomOLD 3275 rexcom4a 3276 2ex2rexrot 3282 reuind 3741 uni0b 4913 iuncom4 4980 dfiun2g 5010 dfiun2gOLD 5011 iunn0 5047 iunxiun 5077 iinexg 5328 inuni 5330 iunopab 5544 iunopabOLD 5545 xpiundi 5736 xpiundir 5737 cnvuni 5877 dmiun 5904 dmopab2rex 5908 elsnres 6019 rniun 6147 xpdifid 6168 imaco 6251 coiun 6256 abrexco 7246 imaiun 7247 fliftf 7317 imaeqsexvOLD 7365 imaeqexov 7653 fiun 7949 f1iun 7950 oprabrexex2 7985 releldm2 8050 oarec 8582 omeu 8605 eroveu 8834 brttrcl2 9736 dfac5lem2 10146 genpass 11031 supaddc 12217 supadd 12218 supmul1 12219 supmullem2 12221 supmul 12222 pceu 16866 4sqlem12 16976 mreiincl 17610 psgneu 19492 ntreq0 23031 unisngl 23481 metrest 24481 metuel2 24522 nosupno 27684 nosupfv 27687 noinfno 27699 noinffv 27702 elold 27844 lrrecfr 27912 sleadd1 27958 addsuniflem 27970 addsasslem1 27972 addsasslem2 27973 mulsuniflem 28111 addsdilem1 28113 addsdilem2 28114 mulsasslem1 28125 mulsasslem2 28126 renegscl 28366 readdscl 28367 remulscl 28370 istrkg2ld 28404 fpwrelmapffslem 32678 omssubaddlem 34260 omssubadd 34261 bnj906 34903 satfdm 35333 dmopab3rexdif 35369 rexxfr3dALT 35603 bj-elsngl 36928 bj-restn0 37050 ismblfin 37627 itg2addnclem3 37639 sdclem1 37709 eldmqs1cossres 38619 prter2 38841 lshpsmreu 39069 islpln5 39496 islvol5 39540 cdlemftr3 40526 mapdpglem3 41636 hdmapglem7a 41888 diophrex 42749 imaiun1 43626 coiun1 43627 grumnudlem 44261 upbdrech 45274 usgrgrtrirex 47875 |
| Copyright terms: Public domain | W3C validator |