![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexcom4 | Structured version Visualization version GIF version |
Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019.) |
Ref | Expression |
---|---|
rexcom4 | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exdistr 1951 | . 2 ⊢ (∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) | |
2 | df-rex 3068 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | 2 | exbii 1844 | . . 3 ⊢ (∃𝑦∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
4 | excom 2159 | . . 3 ⊢ (∃𝑦∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
5 | 3, 4 | bitri 275 | . 2 ⊢ (∃𝑦∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) |
6 | df-rex 3068 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) | |
7 | 1, 5, 6 | 3bitr4ri 304 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1775 ∈ wcel 2105 ∃wrex 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-11 2154 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-rex 3068 |
This theorem is referenced by: rexcomOLD 3288 rexcom4a 3289 2ex2rexrot 3295 reuind 3761 uni0b 4937 iuncom4 5004 dfiun2g 5034 dfiun2gOLD 5035 iunn0 5071 iunxiun 5101 iinexg 5353 inuni 5355 iunopab 5568 iunopabOLD 5569 xpiundi 5758 xpiundir 5759 cnvuni 5899 dmiun 5926 dmopab2rex 5930 elsnres 6040 rniun 6169 xpdifid 6189 imaco 6272 coiun 6277 abrexco 7263 imaiun 7264 fliftf 7334 imaeqsexvOLD 7382 imaeqexov 7670 fiun 7965 f1iun 7966 oprabrexex2 8001 releldm2 8066 oarec 8598 omeu 8621 eroveu 8850 brttrcl2 9751 dfac5lem2 10161 genpass 11046 supaddc 12232 supadd 12233 supmul1 12234 supmullem2 12236 supmul 12237 pceu 16879 4sqlem12 16989 mreiincl 17640 psgneu 19538 ntreq0 23100 unisngl 23550 metrest 24552 metuel2 24593 nosupno 27762 nosupfv 27765 noinfno 27777 noinffv 27780 elold 27922 lrrecfr 27990 sleadd1 28036 addsuniflem 28048 addsasslem1 28050 addsasslem2 28051 mulsuniflem 28189 addsdilem1 28191 addsdilem2 28192 mulsasslem1 28203 mulsasslem2 28204 renegscl 28444 readdscl 28445 remulscl 28448 istrkg2ld 28482 fpwrelmapffslem 32749 omssubaddlem 34280 omssubadd 34281 bnj906 34922 satfdm 35353 dmopab3rexdif 35389 rexxfr3dALT 35623 bj-elsngl 36950 bj-restn0 37072 ismblfin 37647 itg2addnclem3 37659 sdclem1 37729 eldmqs1cossres 38640 prter2 38862 lshpsmreu 39090 islpln5 39517 islvol5 39561 cdlemftr3 40547 mapdpglem3 41657 hdmapglem7a 41909 diophrex 42762 imaiun1 43640 coiun1 43641 grumnudlem 44280 upbdrech 45255 usgrgrtrirex 47852 |
Copyright terms: Public domain | W3C validator |