MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabeq0w Structured version   Visualization version   GIF version

Theorem rabeq0w 4335
Description: Condition for a restricted class abstraction to be empty. Version of rabeq0 4336 using implicit substitution, which does not require ax-10 2143, ax-11 2159, ax-12 2179, but requires ax-8 2112. (Contributed by GG, 30-Sep-2024.)
Hypothesis
Ref Expression
rabeq0w.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
rabeq0w ({𝑥𝐴𝜑} = ∅ ↔ ∀𝑦𝐴 ¬ 𝜓)
Distinct variable groups:   𝑥,𝑦,𝐴   𝜓,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem rabeq0w
StepHypRef Expression
1 eleq1w 2812 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
2 rabeq0w.1 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
31, 2anbi12d 632 . . 3 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ (𝑦𝐴𝜓)))
43ab0w 4327 . 2 ({𝑥 ∣ (𝑥𝐴𝜑)} = ∅ ↔ ∀𝑦 ¬ (𝑦𝐴𝜓))
5 df-rab 3394 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
65eqeq1i 2735 . 2 ({𝑥𝐴𝜑} = ∅ ↔ {𝑥 ∣ (𝑥𝐴𝜑)} = ∅)
7 raln 3053 . 2 (∀𝑦𝐴 ¬ 𝜓 ↔ ∀𝑦 ¬ (𝑦𝐴𝜓))
84, 6, 73bitr4i 303 1 ({𝑥𝐴𝜑} = ∅ ↔ ∀𝑦𝐴 ¬ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wcel 2110  {cab 2708  wral 3045  {crab 3393  c0 4281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rab 3394  df-dif 3903  df-nul 4282
This theorem is referenced by:  dffr2  5575  frc  5577  frirr  5590
  Copyright terms: Public domain W3C validator