MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabeq0w Structured version   Visualization version   GIF version

Theorem rabeq0w 4284
Description: Condition for a restricted class abstraction to be empty. Version of rabeq0 4285 using implicit substitution, which does not require ax-10 2143, ax-11 2160, ax-12 2177, but requires ax-8 2114. (Contributed by Gino Giotto, 30-Sep-2024.)
Hypothesis
Ref Expression
rabeq0w.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
rabeq0w ({𝑥𝐴𝜑} = ∅ ↔ ∀𝑦𝐴 ¬ 𝜓)
Distinct variable groups:   𝑥,𝑦,𝐴   𝜓,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem rabeq0w
StepHypRef Expression
1 eleq1w 2813 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
2 rabeq0w.1 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
31, 2anbi12d 634 . . 3 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ (𝑦𝐴𝜓)))
43ab0w 4274 . 2 ({𝑥 ∣ (𝑥𝐴𝜑)} = ∅ ↔ ∀𝑦 ¬ (𝑦𝐴𝜓))
5 df-rab 3060 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
65eqeq1i 2741 . 2 ({𝑥𝐴𝜑} = ∅ ↔ {𝑥 ∣ (𝑥𝐴𝜑)} = ∅)
7 raln 3068 . 2 (∀𝑦𝐴 ¬ 𝜓 ↔ ∀𝑦 ¬ (𝑦𝐴𝜓))
84, 6, 73bitr4i 306 1 ({𝑥𝐴𝜑} = ∅ ↔ ∀𝑦𝐴 ¬ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wal 1541   = wceq 1543  wcel 2112  {cab 2714  wral 3051  {crab 3055  c0 4223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-ral 3056  df-rab 3060  df-dif 3856  df-nul 4224
This theorem is referenced by:  dffr2  5500  frc  5502  frirr  5513
  Copyright terms: Public domain W3C validator