| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeq0w | Structured version Visualization version GIF version | ||
| Description: Condition for a restricted class abstraction to be empty. Version of rabeq0 4354 using implicit substitution, which does not require ax-10 2142, ax-11 2158, ax-12 2178, but requires ax-8 2111. (Contributed by GG, 30-Sep-2024.) |
| Ref | Expression |
|---|---|
| rabeq0w.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rabeq0w | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑦 ∈ 𝐴 ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1w 2812 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 2 | rabeq0w.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 ∧ 𝜓))) |
| 4 | 3 | ab0w 4345 | . 2 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = ∅ ↔ ∀𝑦 ¬ (𝑦 ∈ 𝐴 ∧ 𝜓)) |
| 5 | df-rab 3409 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 6 | 5 | eqeq1i 2735 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = ∅) |
| 7 | raln 3053 | . 2 ⊢ (∀𝑦 ∈ 𝐴 ¬ 𝜓 ↔ ∀𝑦 ¬ (𝑦 ∈ 𝐴 ∧ 𝜓)) | |
| 8 | 4, 6, 7 | 3bitr4i 303 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑦 ∈ 𝐴 ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 {cab 2708 ∀wral 3045 {crab 3408 ∅c0 4299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rab 3409 df-dif 3920 df-nul 4300 |
| This theorem is referenced by: dffr2 5602 frc 5604 frirr 5617 |
| Copyright terms: Public domain | W3C validator |