Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabeq0w | Structured version Visualization version GIF version |
Description: Condition for a restricted class abstraction to be empty. Version of rabeq0 4324 using implicit substitution, which does not require ax-10 2135, ax-11 2152, ax-12 2169, but requires ax-8 2106. (Contributed by Gino Giotto, 30-Sep-2024.) |
Ref | Expression |
---|---|
rabeq0w.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rabeq0w | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑦 ∈ 𝐴 ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1w 2819 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
2 | rabeq0w.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 ∧ 𝜓))) |
4 | 3 | ab0w 4313 | . 2 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = ∅ ↔ ∀𝑦 ¬ (𝑦 ∈ 𝐴 ∧ 𝜓)) |
5 | df-rab 3306 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
6 | 5 | eqeq1i 2741 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = ∅) |
7 | raln 3070 | . 2 ⊢ (∀𝑦 ∈ 𝐴 ¬ 𝜓 ↔ ∀𝑦 ¬ (𝑦 ∈ 𝐴 ∧ 𝜓)) | |
8 | 4, 6, 7 | 3bitr4i 303 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑦 ∈ 𝐴 ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1537 = wceq 1539 ∈ wcel 2104 {cab 2713 ∀wral 3062 {crab 3303 ∅c0 4262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3063 df-rab 3306 df-dif 3895 df-nul 4263 |
This theorem is referenced by: dffr2 5564 frc 5566 frirr 5577 |
Copyright terms: Public domain | W3C validator |