Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralnex | Structured version Visualization version GIF version |
Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) (Proof shortened by BJ, 16-Jul-2021.) |
Ref | Expression |
---|---|
ralnex | ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raln 3080 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | alnex 1785 | . . 3 ⊢ (∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ¬ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | df-rex 3069 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
4 | 2, 3 | xchbinxr 334 | . 2 ⊢ (∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) |
5 | 1, 4 | bitri 274 | 1 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) |
Copyright terms: Public domain | W3C validator |