![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabeq0 | Structured version Visualization version GIF version |
Description: Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010.) (Revised by BJ, 16-Jul-2021.) |
Ref | Expression |
---|---|
rabeq0 | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ab0 4386 | . 2 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = ∅ ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | df-rab 3434 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
3 | 2 | eqeq1i 2740 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = ∅) |
4 | raln 3067 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
5 | 1, 3, 4 | 3bitr4i 303 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∀wal 1535 = wceq 1537 ∈ wcel 2106 {cab 2712 ∀wral 3059 {crab 3433 ∅c0 4339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-ral 3060 df-rab 3434 df-dif 3966 df-nul 4340 |
This theorem is referenced by: rabn0 4395 rabnc 4397 dffr2ALT 5651 wereu2 5686 frpomin 6363 frpomin2 6364 tz6.26OLD 6371 fndmdifeq0 7064 fnnfpeq0 7198 wemapso2 9591 wemapwe 9735 hashbclem 14488 hashbc 14489 wrdnfi 14583 smuval2 16516 smupvallem 16517 smu01lem 16519 smumullem 16526 phiprmpw 16810 hashgcdeq 16823 prmreclem4 16953 cshws0 17136 pmtrsn 19552 efgsfo 19772 00lsp 20997 dsmm0cl 21778 ordthauslem 23407 pthaus 23662 xkohaus 23677 hmeofval 23782 mumul 27239 musum 27249 ppiub 27263 lgsquadlem2 27440 umgrnloop0 29141 lfgrnloop 29157 numedglnl 29176 usgrnloop0ALT 29237 lfuhgr1v0e 29286 nbuhgr 29375 nbumgr 29379 uhgrnbgr0nb 29386 nbgr0edglem 29388 vtxd0nedgb 29521 vtxdusgr0edgnelALT 29529 1loopgrnb0 29535 usgrvd0nedg 29566 vtxdginducedm1lem4 29575 wwlks 29865 iswwlksnon 29883 iswspthsnon 29886 0enwwlksnge1 29894 wspn0 29954 rusgr0edg 30003 clwwlk 30012 clwwlkn 30055 clwwlkn0 30057 clwwlknon 30119 clwwlknon1nloop 30128 clwwlknondisj 30140 vdn0conngrumgrv2 30225 eupth2lemb 30266 eulercrct 30271 frgrregorufr0 30353 numclwwlk3lem2 30413 ofldchr 33324 2sqr3minply 33753 zarcls1 33830 measvuni 34195 dya2iocuni 34265 repr0 34605 reprlt 34613 reprgt 34615 nummin 35084 subfacp1lem6 35170 prv1n 35416 poimirlem26 37633 poimirlem27 37634 cnambfre 37655 itg2addnclem2 37659 areacirclem5 37699 sticksstones1 42128 nna4b4nsq 42647 0dioph 42766 undisjrab 44302 supminfxr 45414 dvnprodlem3 45904 pimltmnf2f 46653 pimconstlt0 46657 pimgtpnf2f 46661 isubgr0uhgr 47797 stgr0 47863 rmsupp0 48213 lcoc0 48268 rrxsphere 48598 |
Copyright terms: Public domain | W3C validator |