| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeq0 | Structured version Visualization version GIF version | ||
| Description: Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010.) (Revised by BJ, 16-Jul-2021.) |
| Ref | Expression |
|---|---|
| rabeq0 | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ab0 4339 | . 2 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = ∅ ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | df-rab 3403 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 3 | 2 | eqeq1i 2734 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = ∅) |
| 4 | raln 3052 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 5 | 1, 3, 4 | 3bitr4i 303 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 {crab 3402 ∅c0 4292 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-ral 3045 df-rab 3403 df-dif 3914 df-nul 4293 |
| This theorem is referenced by: rabn0 4348 rabnc 4350 dffr2ALT 5593 wereu2 5628 frpomin 6301 frpomin2 6302 fndmdifeq0 6998 fnnfpeq0 7134 wemapso2 9482 wemapwe 9626 hashbclem 14393 hashbc 14394 wrdnfi 14489 smuval2 16428 smupvallem 16429 smu01lem 16431 smumullem 16438 phiprmpw 16722 hashgcdeq 16736 prmreclem4 16866 cshws0 17048 pmtrsn 19425 efgsfo 19645 00lsp 20863 dsmm0cl 21625 ordthauslem 23246 pthaus 23501 xkohaus 23516 hmeofval 23621 mumul 27067 musum 27077 ppiub 27091 lgsquadlem2 27268 umgrnloop0 29012 lfgrnloop 29028 numedglnl 29047 usgrnloop0ALT 29108 lfuhgr1v0e 29157 nbuhgr 29246 nbumgr 29250 uhgrnbgr0nb 29257 nbgr0edglem 29259 vtxd0nedgb 29392 vtxdusgr0edgnelALT 29400 1loopgrnb0 29406 usgrvd0nedg 29437 vtxdginducedm1lem4 29446 wwlks 29738 iswwlksnon 29756 iswspthsnon 29759 0enwwlksnge1 29767 wspn0 29827 rusgr0edg 29876 clwwlk 29885 clwwlkn 29928 clwwlkn0 29930 clwwlknon 29992 clwwlknon1nloop 30001 clwwlknondisj 30013 vdn0conngrumgrv2 30098 eupth2lemb 30139 eulercrct 30144 frgrregorufr0 30226 numclwwlk3lem2 30286 ofldchr 33265 2sqr3minply 33743 cos9thpiminply 33751 zarcls1 33832 measvuni 34177 dya2iocuni 34247 repr0 34575 reprlt 34583 reprgt 34585 nummin 35054 subfacp1lem6 35145 prv1n 35391 poimirlem26 37613 poimirlem27 37614 cnambfre 37635 itg2addnclem2 37639 areacirclem5 37679 sticksstones1 42107 nna4b4nsq 42621 0dioph 42739 undisjrab 44268 supminfxr 45433 dvnprodlem3 45919 pimltmnf2f 46668 pimconstlt0 46672 pimgtpnf2f 46676 isubgr0uhgr 47846 stgr0 47932 rmsupp0 48329 lcoc0 48384 rrxsphere 48710 |
| Copyright terms: Public domain | W3C validator |