| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeq0 | Structured version Visualization version GIF version | ||
| Description: Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010.) (Revised by BJ, 16-Jul-2021.) |
| Ref | Expression |
|---|---|
| rabeq0 | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ab0 4379 | . 2 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = ∅ ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | df-rab 3436 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 3 | 2 | eqeq1i 2741 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = ∅) |
| 4 | raln 3068 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 5 | 1, 3, 4 | 3bitr4i 303 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∀wal 1537 = wceq 1539 ∈ wcel 2107 {cab 2713 ∀wral 3060 {crab 3435 ∅c0 4332 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-ral 3061 df-rab 3436 df-dif 3953 df-nul 4333 |
| This theorem is referenced by: rabn0 4388 rabnc 4390 dffr2ALT 5646 wereu2 5681 frpomin 6360 frpomin2 6361 tz6.26OLD 6368 fndmdifeq0 7063 fnnfpeq0 7199 wemapso2 9594 wemapwe 9738 hashbclem 14492 hashbc 14493 wrdnfi 14587 smuval2 16520 smupvallem 16521 smu01lem 16523 smumullem 16530 phiprmpw 16814 hashgcdeq 16828 prmreclem4 16958 cshws0 17140 pmtrsn 19538 efgsfo 19758 00lsp 20980 dsmm0cl 21761 ordthauslem 23392 pthaus 23647 xkohaus 23662 hmeofval 23767 mumul 27225 musum 27235 ppiub 27249 lgsquadlem2 27426 umgrnloop0 29127 lfgrnloop 29143 numedglnl 29162 usgrnloop0ALT 29223 lfuhgr1v0e 29272 nbuhgr 29361 nbumgr 29365 uhgrnbgr0nb 29372 nbgr0edglem 29374 vtxd0nedgb 29507 vtxdusgr0edgnelALT 29515 1loopgrnb0 29521 usgrvd0nedg 29552 vtxdginducedm1lem4 29561 wwlks 29856 iswwlksnon 29874 iswspthsnon 29877 0enwwlksnge1 29885 wspn0 29945 rusgr0edg 29994 clwwlk 30003 clwwlkn 30046 clwwlkn0 30048 clwwlknon 30110 clwwlknon1nloop 30119 clwwlknondisj 30131 vdn0conngrumgrv2 30216 eupth2lemb 30257 eulercrct 30262 frgrregorufr0 30344 numclwwlk3lem2 30404 ofldchr 33345 2sqr3minply 33792 zarcls1 33869 measvuni 34216 dya2iocuni 34286 repr0 34627 reprlt 34635 reprgt 34637 nummin 35106 subfacp1lem6 35191 prv1n 35437 poimirlem26 37654 poimirlem27 37655 cnambfre 37676 itg2addnclem2 37680 areacirclem5 37720 sticksstones1 42148 nna4b4nsq 42675 0dioph 42794 undisjrab 44330 supminfxr 45480 dvnprodlem3 45968 pimltmnf2f 46717 pimconstlt0 46721 pimgtpnf2f 46725 isubgr0uhgr 47864 stgr0 47932 rmsupp0 48289 lcoc0 48344 rrxsphere 48674 |
| Copyright terms: Public domain | W3C validator |