![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabeq0 | Structured version Visualization version GIF version |
Description: Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010.) (Revised by BJ, 16-Jul-2021.) |
Ref | Expression |
---|---|
rabeq0 | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ab0 4402 | . 2 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = ∅ ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | df-rab 3444 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
3 | 2 | eqeq1i 2745 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = ∅) |
4 | raln 3075 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
5 | 1, 3, 4 | 3bitr4i 303 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∀wal 1535 = wceq 1537 ∈ wcel 2108 {cab 2717 ∀wral 3067 {crab 3443 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-ral 3068 df-rab 3444 df-dif 3979 df-nul 4353 |
This theorem is referenced by: rabn0 4412 rabnc 4414 dffr2ALT 5662 wereu2 5697 frpomin 6372 frpomin2 6373 tz6.26OLD 6380 fndmdifeq0 7077 fnnfpeq0 7212 wemapso2 9622 wemapwe 9766 hashbclem 14501 hashbc 14502 wrdnfi 14596 smuval2 16528 smupvallem 16529 smu01lem 16531 smumullem 16538 phiprmpw 16823 hashgcdeq 16836 prmreclem4 16966 cshws0 17149 pmtrsn 19561 efgsfo 19781 00lsp 21002 dsmm0cl 21783 ordthauslem 23412 pthaus 23667 xkohaus 23682 hmeofval 23787 mumul 27242 musum 27252 ppiub 27266 lgsquadlem2 27443 umgrnloop0 29144 lfgrnloop 29160 numedglnl 29179 usgrnloop0ALT 29240 lfuhgr1v0e 29289 nbuhgr 29378 nbumgr 29382 uhgrnbgr0nb 29389 nbgr0edglem 29391 vtxd0nedgb 29524 vtxdusgr0edgnelALT 29532 1loopgrnb0 29538 usgrvd0nedg 29569 vtxdginducedm1lem4 29578 wwlks 29868 iswwlksnon 29886 iswspthsnon 29889 0enwwlksnge1 29897 wspn0 29957 rusgr0edg 30006 clwwlk 30015 clwwlkn 30058 clwwlkn0 30060 clwwlknon 30122 clwwlknon1nloop 30131 clwwlknondisj 30143 vdn0conngrumgrv2 30228 eupth2lemb 30269 eulercrct 30274 frgrregorufr0 30356 numclwwlk3lem2 30416 ofldchr 33309 2sqr3minply 33738 zarcls1 33815 measvuni 34178 dya2iocuni 34248 repr0 34588 reprlt 34596 reprgt 34598 nummin 35067 subfacp1lem6 35153 prv1n 35399 poimirlem26 37606 poimirlem27 37607 cnambfre 37628 itg2addnclem2 37632 areacirclem5 37672 sticksstones1 42103 nna4b4nsq 42615 0dioph 42734 undisjrab 44275 supminfxr 45379 dvnprodlem3 45869 pimltmnf2f 46618 pimconstlt0 46622 pimgtpnf2f 46626 isubgr0uhgr 47743 rmsupp0 48093 lcoc0 48151 rrxsphere 48482 |
Copyright terms: Public domain | W3C validator |