| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeq0 | Structured version Visualization version GIF version | ||
| Description: Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010.) (Revised by BJ, 16-Jul-2021.) |
| Ref | Expression |
|---|---|
| rabeq0 | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ab0 4360 | . 2 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = ∅ ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | df-rab 3421 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 3 | 2 | eqeq1i 2741 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = ∅) |
| 4 | raln 3060 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 5 | 1, 3, 4 | 3bitr4i 303 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 {cab 2714 ∀wral 3052 {crab 3420 ∅c0 4313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-ral 3053 df-rab 3421 df-dif 3934 df-nul 4314 |
| This theorem is referenced by: rabn0 4369 rabnc 4371 dffr2ALT 5621 wereu2 5656 frpomin 6334 frpomin2 6335 tz6.26OLD 6342 fndmdifeq0 7039 fnnfpeq0 7175 wemapso2 9572 wemapwe 9716 hashbclem 14475 hashbc 14476 wrdnfi 14571 smuval2 16506 smupvallem 16507 smu01lem 16509 smumullem 16516 phiprmpw 16800 hashgcdeq 16814 prmreclem4 16944 cshws0 17126 pmtrsn 19505 efgsfo 19725 00lsp 20943 dsmm0cl 21705 ordthauslem 23326 pthaus 23581 xkohaus 23596 hmeofval 23701 mumul 27148 musum 27158 ppiub 27172 lgsquadlem2 27349 umgrnloop0 29093 lfgrnloop 29109 numedglnl 29128 usgrnloop0ALT 29189 lfuhgr1v0e 29238 nbuhgr 29327 nbumgr 29331 uhgrnbgr0nb 29338 nbgr0edglem 29340 vtxd0nedgb 29473 vtxdusgr0edgnelALT 29481 1loopgrnb0 29487 usgrvd0nedg 29518 vtxdginducedm1lem4 29527 wwlks 29822 iswwlksnon 29840 iswspthsnon 29843 0enwwlksnge1 29851 wspn0 29911 rusgr0edg 29960 clwwlk 29969 clwwlkn 30012 clwwlkn0 30014 clwwlknon 30076 clwwlknon1nloop 30085 clwwlknondisj 30097 vdn0conngrumgrv2 30182 eupth2lemb 30223 eulercrct 30228 frgrregorufr0 30310 numclwwlk3lem2 30370 ofldchr 33341 2sqr3minply 33819 cos9thpiminply 33827 zarcls1 33905 measvuni 34250 dya2iocuni 34320 repr0 34648 reprlt 34656 reprgt 34658 nummin 35127 subfacp1lem6 35212 prv1n 35458 poimirlem26 37675 poimirlem27 37676 cnambfre 37697 itg2addnclem2 37701 areacirclem5 37741 sticksstones1 42164 nna4b4nsq 42658 0dioph 42776 undisjrab 44305 supminfxr 45471 dvnprodlem3 45957 pimltmnf2f 46706 pimconstlt0 46710 pimgtpnf2f 46714 isubgr0uhgr 47866 stgr0 47952 rmsupp0 48323 lcoc0 48378 rrxsphere 48708 |
| Copyright terms: Public domain | W3C validator |