![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabeq0 | Structured version Visualization version GIF version |
Description: Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010.) (Revised by BJ, 16-Jul-2021.) |
Ref | Expression |
---|---|
rabeq0 | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ab0 4375 | . 2 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = ∅ ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | df-rab 3431 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
3 | 2 | eqeq1i 2735 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = ∅) |
4 | raln 3067 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
5 | 1, 3, 4 | 3bitr4i 302 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 394 ∀wal 1537 = wceq 1539 ∈ wcel 2104 {cab 2707 ∀wral 3059 {crab 3430 ∅c0 4323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2722 df-ral 3060 df-rab 3431 df-dif 3952 df-nul 4324 |
This theorem is referenced by: rabn0 4386 rabnc 4388 dffr2ALT 5642 wereu2 5674 frpomin 6342 frpomin2 6343 tz6.26OLD 6350 fndmdifeq0 7046 fnnfpeq0 7179 wemapso2 9552 wemapwe 9696 hashbclem 14417 hashbc 14418 wrdnfi 14504 smuval2 16429 smupvallem 16430 smu01lem 16432 smumullem 16439 phiprmpw 16715 hashgcdeq 16728 prmreclem4 16858 cshws0 17041 pmtrsn 19430 efgsfo 19650 00lsp 20738 dsmm0cl 21516 ordthauslem 23109 pthaus 23364 xkohaus 23379 hmeofval 23484 mumul 26919 musum 26929 ppiub 26941 lgsquadlem2 27118 umgrnloop0 28634 lfgrnloop 28650 numedglnl 28669 usgrnloop0ALT 28727 lfuhgr1v0e 28776 nbuhgr 28865 nbumgr 28869 uhgrnbgr0nb 28876 nbgr0vtxlem 28877 vtxd0nedgb 29010 vtxdusgr0edgnelALT 29018 1loopgrnb0 29024 usgrvd0nedg 29055 vtxdginducedm1lem4 29064 wwlks 29354 iswwlksnon 29372 iswspthsnon 29375 0enwwlksnge1 29383 wspn0 29443 rusgr0edg 29492 clwwlk 29501 clwwlkn 29544 clwwlkn0 29546 clwwlknon 29608 clwwlknon1nloop 29617 clwwlknondisj 29629 vdn0conngrumgrv2 29714 eupth2lemb 29755 eulercrct 29760 frgrregorufr0 29842 numclwwlk3lem2 29902 ofldchr 32700 zarcls1 33145 measvuni 33508 dya2iocuni 33578 repr0 33919 reprlt 33927 reprgt 33929 nummin 34390 subfacp1lem6 34472 prv1n 34718 poimirlem26 36819 poimirlem27 36820 cnambfre 36841 itg2addnclem2 36845 areacirclem5 36885 sticksstones1 41270 nna4b4nsq 41706 0dioph 41820 undisjrab 43369 supminfxr 44474 dvnprodlem3 44964 pimltmnf2f 45713 pimconstlt0 45717 pimgtpnf2f 45721 rmsupp0 47134 lcoc0 47192 rrxsphere 47523 |
Copyright terms: Public domain | W3C validator |