| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeq0 | Structured version Visualization version GIF version | ||
| Description: Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010.) (Revised by BJ, 16-Jul-2021.) |
| Ref | Expression |
|---|---|
| rabeq0 | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ab0 4355 | . 2 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = ∅ ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | df-rab 3416 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 3 | 2 | eqeq1i 2740 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = ∅) |
| 4 | raln 3059 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 5 | 1, 3, 4 | 3bitr4i 303 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2108 {cab 2713 ∀wral 3051 {crab 3415 ∅c0 4308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-ral 3052 df-rab 3416 df-dif 3929 df-nul 4309 |
| This theorem is referenced by: rabn0 4364 rabnc 4366 dffr2ALT 5616 wereu2 5651 frpomin 6329 frpomin2 6330 tz6.26OLD 6337 fndmdifeq0 7033 fnnfpeq0 7169 wemapso2 9565 wemapwe 9709 hashbclem 14468 hashbc 14469 wrdnfi 14564 smuval2 16499 smupvallem 16500 smu01lem 16502 smumullem 16509 phiprmpw 16793 hashgcdeq 16807 prmreclem4 16937 cshws0 17119 pmtrsn 19498 efgsfo 19718 00lsp 20936 dsmm0cl 21698 ordthauslem 23319 pthaus 23574 xkohaus 23589 hmeofval 23694 mumul 27141 musum 27151 ppiub 27165 lgsquadlem2 27342 umgrnloop0 29034 lfgrnloop 29050 numedglnl 29069 usgrnloop0ALT 29130 lfuhgr1v0e 29179 nbuhgr 29268 nbumgr 29272 uhgrnbgr0nb 29279 nbgr0edglem 29281 vtxd0nedgb 29414 vtxdusgr0edgnelALT 29422 1loopgrnb0 29428 usgrvd0nedg 29459 vtxdginducedm1lem4 29468 wwlks 29763 iswwlksnon 29781 iswspthsnon 29784 0enwwlksnge1 29792 wspn0 29852 rusgr0edg 29901 clwwlk 29910 clwwlkn 29953 clwwlkn0 29955 clwwlknon 30017 clwwlknon1nloop 30026 clwwlknondisj 30038 vdn0conngrumgrv2 30123 eupth2lemb 30164 eulercrct 30169 frgrregorufr0 30251 numclwwlk3lem2 30311 ofldchr 33282 2sqr3minply 33760 cos9thpiminply 33768 zarcls1 33846 measvuni 34191 dya2iocuni 34261 repr0 34589 reprlt 34597 reprgt 34599 nummin 35068 subfacp1lem6 35153 prv1n 35399 poimirlem26 37616 poimirlem27 37617 cnambfre 37638 itg2addnclem2 37642 areacirclem5 37682 sticksstones1 42105 nna4b4nsq 42630 0dioph 42748 undisjrab 44278 supminfxr 45439 dvnprodlem3 45925 pimltmnf2f 46674 pimconstlt0 46678 pimgtpnf2f 46682 isubgr0uhgr 47834 stgr0 47920 rmsupp0 48291 lcoc0 48346 rrxsphere 48676 |
| Copyright terms: Public domain | W3C validator |