![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabeq0 | Structured version Visualization version GIF version |
Description: Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010.) (Revised by BJ, 16-Jul-2021.) |
Ref | Expression |
---|---|
rabeq0 | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ab0 4375 | . 2 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = ∅ ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | df-rab 3434 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
3 | 2 | eqeq1i 2738 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = ∅) |
4 | raln 3070 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
5 | 1, 3, 4 | 3bitr4i 303 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 397 ∀wal 1540 = wceq 1542 ∈ wcel 2107 {cab 2710 ∀wral 3062 {crab 3433 ∅c0 4323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-ral 3063 df-rab 3434 df-dif 3952 df-nul 4324 |
This theorem is referenced by: rabn0 4386 rabnc 4388 dffr2ALT 5642 wereu2 5674 frpomin 6342 frpomin2 6343 tz6.26OLD 6350 fndmdifeq0 7046 fnnfpeq0 7176 wemapso2 9548 wemapwe 9692 hashbclem 14411 hashbc 14412 wrdnfi 14498 smuval2 16423 smupvallem 16424 smu01lem 16426 smumullem 16433 phiprmpw 16709 hashgcdeq 16722 prmreclem4 16852 cshws0 17035 pmtrsn 19387 efgsfo 19607 00lsp 20592 dsmm0cl 21295 ordthauslem 22887 pthaus 23142 xkohaus 23157 hmeofval 23262 mumul 26685 musum 26695 ppiub 26707 lgsquadlem2 26884 umgrnloop0 28369 lfgrnloop 28385 numedglnl 28404 usgrnloop0ALT 28462 lfuhgr1v0e 28511 nbuhgr 28600 nbumgr 28604 uhgrnbgr0nb 28611 nbgr0vtxlem 28612 vtxd0nedgb 28745 vtxdusgr0edgnelALT 28753 1loopgrnb0 28759 usgrvd0nedg 28790 vtxdginducedm1lem4 28799 wwlks 29089 iswwlksnon 29107 iswspthsnon 29110 0enwwlksnge1 29118 wspn0 29178 rusgr0edg 29227 clwwlk 29236 clwwlkn 29279 clwwlkn0 29281 clwwlknon 29343 clwwlknon1nloop 29352 clwwlknondisj 29364 vdn0conngrumgrv2 29449 eupth2lemb 29490 eulercrct 29495 frgrregorufr0 29577 numclwwlk3lem2 29637 ofldchr 32432 zarcls1 32849 measvuni 33212 dya2iocuni 33282 repr0 33623 reprlt 33631 reprgt 33633 nummin 34094 subfacp1lem6 34176 prv1n 34422 poimirlem26 36514 poimirlem27 36515 cnambfre 36536 itg2addnclem2 36540 areacirclem5 36580 sticksstones1 40962 nna4b4nsq 41402 0dioph 41516 undisjrab 43065 supminfxr 44174 dvnprodlem3 44664 pimltmnf2f 45413 pimconstlt0 45417 pimgtpnf2f 45421 rmsupp0 47044 lcoc0 47103 rrxsphere 47434 |
Copyright terms: Public domain | W3C validator |