| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeq0 | Structured version Visualization version GIF version | ||
| Description: Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010.) (Revised by BJ, 16-Jul-2021.) |
| Ref | Expression |
|---|---|
| rabeq0 | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ab0 4327 | . 2 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = ∅ ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | df-rab 3396 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 3 | 2 | eqeq1i 2736 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = ∅) |
| 4 | raln 3055 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 5 | 1, 3, 4 | 3bitr4i 303 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2111 {cab 2709 ∀wral 3047 {crab 3395 ∅c0 4280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-ral 3048 df-rab 3396 df-dif 3900 df-nul 4281 |
| This theorem is referenced by: rabn0 4336 rabnc 4338 dffr2ALT 5576 wereu2 5611 frpomin 6287 frpomin2 6288 fndmdifeq0 6977 fnnfpeq0 7112 wemapso2 9439 wemapwe 9587 hashbclem 14359 hashbc 14360 wrdnfi 14455 smuval2 16393 smupvallem 16394 smu01lem 16396 smumullem 16403 phiprmpw 16687 hashgcdeq 16701 prmreclem4 16831 cshws0 17013 pmtrsn 19431 efgsfo 19651 00lsp 20914 ofldchr 21513 dsmm0cl 21677 ordthauslem 23298 pthaus 23553 xkohaus 23568 hmeofval 23673 mumul 27118 musum 27128 ppiub 27142 lgsquadlem2 27319 umgrnloop0 29087 lfgrnloop 29103 numedglnl 29122 usgrnloop0ALT 29183 lfuhgr1v0e 29232 nbuhgr 29321 nbumgr 29325 uhgrnbgr0nb 29332 nbgr0edglem 29334 vtxd0nedgb 29467 vtxdusgr0edgnelALT 29475 1loopgrnb0 29481 usgrvd0nedg 29512 vtxdginducedm1lem4 29521 wwlks 29813 iswwlksnon 29831 iswspthsnon 29834 0enwwlksnge1 29842 wspn0 29902 rusgr0edg 29954 clwwlk 29963 clwwlkn 30006 clwwlkn0 30008 clwwlknon 30070 clwwlknon1nloop 30079 clwwlknondisj 30091 vdn0conngrumgrv2 30176 eupth2lemb 30217 eulercrct 30222 frgrregorufr0 30304 numclwwlk3lem2 30364 2sqr3minply 33793 cos9thpiminply 33801 zarcls1 33882 measvuni 34227 dya2iocuni 34296 repr0 34624 reprlt 34632 reprgt 34634 nummin 35104 fineqvnttrclselem1 35141 subfacp1lem6 35229 prv1n 35475 poimirlem26 37694 poimirlem27 37695 cnambfre 37716 itg2addnclem2 37720 areacirclem5 37760 sticksstones1 42187 nna4b4nsq 42701 0dioph 42819 undisjrab 44347 supminfxr 45510 dvnprodlem3 45994 pimltmnf2f 46743 pimconstlt0 46747 pimgtpnf2f 46751 isubgr0uhgr 47912 stgr0 47999 rmsupp0 48407 lcoc0 48462 rrxsphere 48788 |
| Copyright terms: Public domain | W3C validator |