Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabeq0 | Structured version Visualization version GIF version |
Description: Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010.) (Revised by BJ, 16-Jul-2021.) |
Ref | Expression |
---|---|
rabeq0 | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ab0 4309 | . 2 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = ∅ ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | df-rab 3074 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
3 | 2 | eqeq1i 2744 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = ∅) |
4 | raln 3082 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
5 | 1, 3, 4 | 3bitr4i 303 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 ∀wal 1537 = wceq 1539 ∈ wcel 2107 {cab 2716 ∀wral 3065 {crab 3069 ∅c0 4257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2717 df-cleq 2731 df-ral 3070 df-rab 3074 df-dif 3891 df-nul 4258 |
This theorem is referenced by: rabn0 4320 rabnc 4322 dffr2ALT 5555 wereu2 5587 frpomin 6247 frpomin2 6248 tz6.26OLD 6255 fndmdifeq0 6930 fnnfpeq0 7059 wemapso2 9321 wemapwe 9464 hashbclem 14173 hashbc 14174 wrdnfi 14260 smuval2 16198 smupvallem 16199 smu01lem 16201 smumullem 16208 phiprmpw 16486 hashgcdeq 16499 prmreclem4 16629 cshws0 16812 pmtrsn 19136 efgsfo 19354 00lsp 20252 dsmm0cl 20956 ordthauslem 22543 pthaus 22798 xkohaus 22813 hmeofval 22918 mumul 26339 musum 26349 ppiub 26361 lgsquadlem2 26538 umgrnloop0 27488 lfgrnloop 27504 numedglnl 27523 usgrnloop0ALT 27581 lfuhgr1v0e 27630 nbuhgr 27719 nbumgr 27723 uhgrnbgr0nb 27730 nbgr0vtxlem 27731 vtxd0nedgb 27864 vtxdusgr0edgnelALT 27872 1loopgrnb0 27878 usgrvd0nedg 27909 vtxdginducedm1lem4 27918 wwlks 28209 iswwlksnon 28227 iswspthsnon 28230 0enwwlksnge1 28238 wspn0 28298 rusgr0edg 28347 clwwlk 28356 clwwlkn 28399 clwwlkn0 28401 clwwlknon 28463 clwwlknon1nloop 28472 clwwlknondisj 28484 vdn0conngrumgrv2 28569 eupth2lemb 28610 eulercrct 28615 frgrregorufr0 28697 numclwwlk3lem2 28757 ofldchr 31522 zarcls1 31828 measvuni 32191 dya2iocuni 32259 repr0 32600 reprlt 32608 reprgt 32610 nummin 33072 subfacp1lem6 33156 prv1n 33402 poimirlem26 35812 poimirlem27 35813 cnambfre 35834 itg2addnclem2 35838 areacirclem5 35878 sticksstones1 40109 nna4b4nsq 40504 0dioph 40607 undisjrab 41931 supminfxr 43011 dvnprodlem3 43496 pimltmnf2f 44242 pimconstlt0 44246 pimgtpnf2f 44250 rmsupp0 45715 lcoc0 45774 rrxsphere 46105 |
Copyright terms: Public domain | W3C validator |