| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeq0 | Structured version Visualization version GIF version | ||
| Description: Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010.) (Revised by BJ, 16-Jul-2021.) |
| Ref | Expression |
|---|---|
| rabeq0 | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ab0 4343 | . 2 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = ∅ ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | df-rab 3406 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 3 | 2 | eqeq1i 2734 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = ∅) |
| 4 | raln 3052 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 5 | 1, 3, 4 | 3bitr4i 303 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 {crab 3405 ∅c0 4296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-ral 3045 df-rab 3406 df-dif 3917 df-nul 4297 |
| This theorem is referenced by: rabn0 4352 rabnc 4354 dffr2ALT 5600 wereu2 5635 frpomin 6313 frpomin2 6314 fndmdifeq0 7016 fnnfpeq0 7152 wemapso2 9506 wemapwe 9650 hashbclem 14417 hashbc 14418 wrdnfi 14513 smuval2 16452 smupvallem 16453 smu01lem 16455 smumullem 16462 phiprmpw 16746 hashgcdeq 16760 prmreclem4 16890 cshws0 17072 pmtrsn 19449 efgsfo 19669 00lsp 20887 dsmm0cl 21649 ordthauslem 23270 pthaus 23525 xkohaus 23540 hmeofval 23645 mumul 27091 musum 27101 ppiub 27115 lgsquadlem2 27292 umgrnloop0 29036 lfgrnloop 29052 numedglnl 29071 usgrnloop0ALT 29132 lfuhgr1v0e 29181 nbuhgr 29270 nbumgr 29274 uhgrnbgr0nb 29281 nbgr0edglem 29283 vtxd0nedgb 29416 vtxdusgr0edgnelALT 29424 1loopgrnb0 29430 usgrvd0nedg 29461 vtxdginducedm1lem4 29470 wwlks 29765 iswwlksnon 29783 iswspthsnon 29786 0enwwlksnge1 29794 wspn0 29854 rusgr0edg 29903 clwwlk 29912 clwwlkn 29955 clwwlkn0 29957 clwwlknon 30019 clwwlknon1nloop 30028 clwwlknondisj 30040 vdn0conngrumgrv2 30125 eupth2lemb 30166 eulercrct 30171 frgrregorufr0 30253 numclwwlk3lem2 30313 ofldchr 33292 2sqr3minply 33770 cos9thpiminply 33778 zarcls1 33859 measvuni 34204 dya2iocuni 34274 repr0 34602 reprlt 34610 reprgt 34612 nummin 35081 subfacp1lem6 35172 prv1n 35418 poimirlem26 37640 poimirlem27 37641 cnambfre 37662 itg2addnclem2 37666 areacirclem5 37706 sticksstones1 42134 nna4b4nsq 42648 0dioph 42766 undisjrab 44295 supminfxr 45460 dvnprodlem3 45946 pimltmnf2f 46695 pimconstlt0 46699 pimgtpnf2f 46703 isubgr0uhgr 47873 stgr0 47959 rmsupp0 48356 lcoc0 48411 rrxsphere 48737 |
| Copyright terms: Public domain | W3C validator |