| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeq0 | Structured version Visualization version GIF version | ||
| Description: Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010.) (Revised by BJ, 16-Jul-2021.) |
| Ref | Expression |
|---|---|
| rabeq0 | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ab0 4331 | . 2 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = ∅ ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | df-rab 3395 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 3 | 2 | eqeq1i 2734 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = ∅) |
| 4 | raln 3052 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 5 | 1, 3, 4 | 3bitr4i 303 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 {crab 3394 ∅c0 4284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-ral 3045 df-rab 3395 df-dif 3906 df-nul 4285 |
| This theorem is referenced by: rabn0 4340 rabnc 4342 dffr2ALT 5581 wereu2 5616 frpomin 6288 frpomin2 6289 fndmdifeq0 6978 fnnfpeq0 7114 wemapso2 9445 wemapwe 9593 hashbclem 14359 hashbc 14360 wrdnfi 14455 smuval2 16393 smupvallem 16394 smu01lem 16396 smumullem 16403 phiprmpw 16687 hashgcdeq 16701 prmreclem4 16831 cshws0 17013 pmtrsn 19398 efgsfo 19618 00lsp 20884 ofldchr 21483 dsmm0cl 21647 ordthauslem 23268 pthaus 23523 xkohaus 23538 hmeofval 23643 mumul 27089 musum 27099 ppiub 27113 lgsquadlem2 27290 umgrnloop0 29054 lfgrnloop 29070 numedglnl 29089 usgrnloop0ALT 29150 lfuhgr1v0e 29199 nbuhgr 29288 nbumgr 29292 uhgrnbgr0nb 29299 nbgr0edglem 29301 vtxd0nedgb 29434 vtxdusgr0edgnelALT 29442 1loopgrnb0 29448 usgrvd0nedg 29479 vtxdginducedm1lem4 29488 wwlks 29780 iswwlksnon 29798 iswspthsnon 29801 0enwwlksnge1 29809 wspn0 29869 rusgr0edg 29918 clwwlk 29927 clwwlkn 29970 clwwlkn0 29972 clwwlknon 30034 clwwlknon1nloop 30043 clwwlknondisj 30055 vdn0conngrumgrv2 30140 eupth2lemb 30181 eulercrct 30186 frgrregorufr0 30268 numclwwlk3lem2 30328 2sqr3minply 33747 cos9thpiminply 33755 zarcls1 33836 measvuni 34181 dya2iocuni 34251 repr0 34579 reprlt 34587 reprgt 34589 nummin 35058 subfacp1lem6 35158 prv1n 35404 poimirlem26 37626 poimirlem27 37627 cnambfre 37648 itg2addnclem2 37652 areacirclem5 37692 sticksstones1 42119 nna4b4nsq 42633 0dioph 42751 undisjrab 44279 supminfxr 45443 dvnprodlem3 45929 pimltmnf2f 46678 pimconstlt0 46682 pimgtpnf2f 46686 isubgr0uhgr 47857 stgr0 47944 rmsupp0 48352 lcoc0 48407 rrxsphere 48733 |
| Copyright terms: Public domain | W3C validator |