Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabeq0 | Structured version Visualization version GIF version |
Description: Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010.) (Revised by BJ, 16-Jul-2021.) |
Ref | Expression |
---|---|
rabeq0 | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ab0 4305 | . 2 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = ∅ ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | df-rab 3072 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
3 | 2 | eqeq1i 2743 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = ∅) |
4 | raln 3080 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
5 | 1, 3, 4 | 3bitr4i 302 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 ∀wal 1537 = wceq 1539 ∈ wcel 2108 {cab 2715 ∀wral 3063 {crab 3067 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-ral 3068 df-rab 3072 df-dif 3886 df-nul 4254 |
This theorem is referenced by: rabn0 4316 rabnc 4318 dffr2ALT 5545 wereu2 5577 frpomin 6228 frpomin2 6229 tz6.26OLD 6236 fndmdifeq0 6903 fnnfpeq0 7032 wemapso2 9242 wemapwe 9385 hashbclem 14092 hashbc 14093 wrdnfi 14179 smuval2 16117 smupvallem 16118 smu01lem 16120 smumullem 16127 phiprmpw 16405 hashgcdeq 16418 prmreclem4 16548 cshws0 16731 pmtrsn 19042 efgsfo 19260 00lsp 20158 dsmm0cl 20857 ordthauslem 22442 pthaus 22697 xkohaus 22712 hmeofval 22817 mumul 26235 musum 26245 ppiub 26257 lgsquadlem2 26434 umgrnloop0 27382 lfgrnloop 27398 numedglnl 27417 usgrnloop0ALT 27475 lfuhgr1v0e 27524 nbuhgr 27613 nbumgr 27617 uhgrnbgr0nb 27624 nbgr0vtxlem 27625 vtxd0nedgb 27758 vtxdusgr0edgnelALT 27766 1loopgrnb0 27772 usgrvd0nedg 27803 vtxdginducedm1lem4 27812 wwlks 28101 iswwlksnon 28119 iswspthsnon 28122 0enwwlksnge1 28130 wspn0 28190 rusgr0edg 28239 clwwlk 28248 clwwlkn 28291 clwwlkn0 28293 clwwlknon 28355 clwwlknon1nloop 28364 clwwlknondisj 28376 vdn0conngrumgrv2 28461 eupth2lemb 28502 eulercrct 28507 frgrregorufr0 28589 numclwwlk3lem2 28649 ofldchr 31415 zarcls1 31721 measvuni 32082 dya2iocuni 32150 repr0 32491 reprlt 32499 reprgt 32501 nummin 32963 subfacp1lem6 33047 prv1n 33293 poimirlem26 35730 poimirlem27 35731 cnambfre 35752 itg2addnclem2 35756 areacirclem5 35796 sticksstones1 40030 nna4b4nsq 40413 0dioph 40516 undisjrab 41813 supminfxr 42894 dvnprodlem3 43379 pimltmnf2 44125 pimconstlt0 44128 pimgtpnf2 44131 rmsupp0 45592 lcoc0 45651 rrxsphere 45982 |
Copyright terms: Public domain | W3C validator |