![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mprgbir | Structured version Visualization version GIF version |
Description: Modus ponens on biconditional combined with restricted generalization. (Contributed by NM, 21-Mar-2004.) |
Ref | Expression |
---|---|
mprgbir.1 | ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
mprgbir.2 | ⊢ (𝑥 ∈ 𝐴 → 𝜓) |
Ref | Expression |
---|---|
mprgbir | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mprgbir.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝜓) | |
2 | 1 | rgen 3060 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜓 |
3 | mprgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) | |
4 | 2, 3 | mpbir 231 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2105 ∀wral 3058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 |
This theorem depends on definitions: df-bi 207 df-ral 3059 |
This theorem is referenced by: ss2rabi 4086 ssintub 4970 djussxp 5858 dmiin 5966 dfco2 6266 coiun 6277 tron 6408 onxpdisj 6511 epweon 7793 frrlem6 8314 frrlem7 8315 wfrrelOLD 8352 wfrdmssOLD 8353 tfrlem6 8420 oawordeulem 8590 sbthlem1 9121 marypha2lem1 9472 ttrclselem1 9762 rankval4 9904 tcwf 9920 inlresf 9951 inrresf 9953 fin23lem16 10372 fin23lem29 10378 fin23lem30 10379 itunitc 10458 acncc 10477 wfgru 10853 renfdisj 11318 ioomax 13458 iccmax 13459 hashgval2 14413 fsumcom2 15806 fprodcom2 16016 dfphi2 16807 oppccatf 17774 dmcoass 18119 letsr 18650 smndex2dnrinv 18940 efgsf 19761 lssuni 20954 lpival 21351 cnsubdrglem 21453 retos 21653 psr1baslem 22201 istopon 22933 neips 23136 filssufilg 23934 xrhmeo 24990 iscmet3i 25359 ehlbase 25462 ovolge0 25529 unidmvol 25589 resinf1o 26592 divlogrlim 26691 dvloglem 26704 logf1o2 26706 atansssdm 26990 ppiub 27262 bday1s 27890 lrrecse 27989 clwwlkn0 30056 sspval 30751 shintcli 31357 lnopco0i 32032 imaelshi 32086 nmopadjlem 32117 nmoptrii 32122 nmopcoi 32123 nmopcoadji 32129 idleop 32159 hmopidmchi 32179 hmopidmpji 32180 djussxp2 32664 xrsclat 32995 rearchi 33353 dmvlsiga 34109 sxbrsigalem0 34252 dya2iocucvr 34265 eulerpartlemgh 34359 bnj110 34850 subfacp1lem1 35163 erdszelem2 35176 dfon2lem3 35766 filnetlem2 36361 taupi 37305 cnviun 43639 coiun1 43641 comptiunov2i 43695 cotrcltrcl 43714 cotrclrcl 43731 ssrab2f 45056 iooinlbub 45453 stirlinglem14 46042 sssalgen 46290 fvmptrabdm 47242 stgr0 47862 unilbss 48665 |
Copyright terms: Public domain | W3C validator |