![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mprgbir | Structured version Visualization version GIF version |
Description: Modus ponens on biconditional combined with restricted generalization. (Contributed by NM, 21-Mar-2004.) |
Ref | Expression |
---|---|
mprgbir.1 | ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
mprgbir.2 | ⊢ (𝑥 ∈ 𝐴 → 𝜓) |
Ref | Expression |
---|---|
mprgbir | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mprgbir.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝜓) | |
2 | 1 | rgen 3061 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜓 |
3 | mprgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) | |
4 | 2, 3 | mpbir 230 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2104 ∀wral 3059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 |
This theorem depends on definitions: df-bi 206 df-ral 3060 |
This theorem is referenced by: ss2rabi 4073 rabxm 4385 ssintub 4969 djussxp 5844 dmiin 5951 dfco2 6243 coiun 6254 tron 6386 onxpdisj 6489 epweon 7764 frrlem6 8278 frrlem7 8279 wfrrelOLD 8316 wfrdmssOLD 8317 tfrlem6 8384 oawordeulem 8556 sbthlem1 9085 marypha2lem1 9432 ttrclselem1 9722 rankval4 9864 tcwf 9880 inlresf 9911 inrresf 9913 fin23lem16 10332 fin23lem29 10338 fin23lem30 10339 itunitc 10418 acncc 10437 wfgru 10813 renfdisj 11278 ioomax 13403 iccmax 13404 hashgval2 14342 fsumcom2 15724 fprodcom2 15932 dfphi2 16711 oppccatf 17678 dmcoass 18020 letsr 18550 smndex2dnrinv 18832 efgsf 19638 lssuni 20694 lpival 21083 cnsubdrglem 21196 retos 21390 psr1baslem 21928 istopon 22634 neips 22837 filssufilg 23635 xrhmeo 24691 iscmet3i 25060 ehlbase 25163 ovolge0 25230 unidmvol 25290 resinf1o 26281 divlogrlim 26379 dvloglem 26392 logf1o2 26394 atansssdm 26674 ppiub 26943 bday1s 27569 lrrecse 27664 clwwlkn0 29548 sspval 30243 shintcli 30849 lnopco0i 31524 imaelshi 31578 nmopadjlem 31609 nmoptrii 31614 nmopcoi 31615 nmopcoadji 31621 idleop 31651 hmopidmchi 31671 hmopidmpji 31672 djussxp2 32140 xrsclat 32448 rearchi 32731 dmvlsiga 33425 sxbrsigalem0 33568 dya2iocucvr 33581 eulerpartlemgh 33675 bnj110 34167 subfacp1lem1 34468 erdszelem2 34481 dfon2lem3 35061 filnetlem2 35567 taupi 36507 cnviun 42703 coiun1 42705 comptiunov2i 42759 cotrcltrcl 42778 cotrclrcl 42795 ssrab2f 44107 iooinlbub 44512 stirlinglem14 45101 sssalgen 45349 fvmptrabdm 46299 unilbss 47589 |
Copyright terms: Public domain | W3C validator |