| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mprgbir | Structured version Visualization version GIF version | ||
| Description: Modus ponens on biconditional combined with restricted generalization. (Contributed by NM, 21-Mar-2004.) |
| Ref | Expression |
|---|---|
| mprgbir.1 | ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
| mprgbir.2 | ⊢ (𝑥 ∈ 𝐴 → 𝜓) |
| Ref | Expression |
|---|---|
| mprgbir | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mprgbir.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝜓) | |
| 2 | 1 | rgen 3053 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜓 |
| 3 | mprgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) | |
| 4 | 2, 3 | mpbir 231 | 1 ⊢ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 ∀wral 3051 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 |
| This theorem depends on definitions: df-bi 207 df-ral 3052 |
| This theorem is referenced by: ss2rabi 4052 ssintub 4942 djussxp 5825 dmiin 5933 dfco2 6234 coiun 6245 tron 6375 onxpdisj 6480 epweon 7769 frrlem6 8290 frrlem7 8291 wfrrelOLD 8328 wfrdmssOLD 8329 tfrlem6 8396 oawordeulem 8566 sbthlem1 9097 marypha2lem1 9447 ttrclselem1 9739 rankval4 9881 tcwf 9897 inlresf 9928 inrresf 9930 fin23lem16 10349 fin23lem29 10355 fin23lem30 10356 itunitc 10435 acncc 10454 wfgru 10830 renfdisj 11295 ioomax 13439 iccmax 13440 hashgval2 14396 fsumcom2 15790 fprodcom2 16000 dfphi2 16793 oppccatf 17740 dmcoass 18079 letsr 18603 smndex2dnrinv 18893 efgsf 19710 lssuni 20896 lpival 21285 cnsubdrglem 21386 retos 21578 psr1baslem 22120 istopon 22850 neips 23051 filssufilg 23849 xrhmeo 24895 iscmet3i 25264 ehlbase 25367 ovolge0 25434 unidmvol 25494 resinf1o 26497 divlogrlim 26596 dvloglem 26609 logf1o2 26611 atansssdm 26895 ppiub 27167 bday1s 27795 lrrecse 27901 clwwlkn0 30009 sspval 30704 shintcli 31310 lnopco0i 31985 imaelshi 32039 nmopadjlem 32070 nmoptrii 32075 nmopcoi 32076 nmopcoadji 32082 idleop 32112 hmopidmchi 32132 hmopidmpji 32133 djussxp2 32626 xrsclat 33003 rearchi 33361 dmvlsiga 34160 sxbrsigalem0 34303 dya2iocucvr 34316 eulerpartlemgh 34410 bnj110 34889 subfacp1lem1 35201 erdszelem2 35214 dfon2lem3 35803 filnetlem2 36397 taupi 37341 cnviun 43674 coiun1 43676 comptiunov2i 43730 cotrcltrcl 43749 cotrclrcl 43766 ssrab2f 45141 iooinlbub 45530 stirlinglem14 46116 sssalgen 46364 fvmptrabdm 47322 stgr0 47972 unilbss 48796 dfinito4 49386 |
| Copyright terms: Public domain | W3C validator |