![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mprgbir | Structured version Visualization version GIF version |
Description: Modus ponens on biconditional combined with restricted generalization. (Contributed by NM, 21-Mar-2004.) |
Ref | Expression |
---|---|
mprgbir.1 | ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
mprgbir.2 | ⊢ (𝑥 ∈ 𝐴 → 𝜓) |
Ref | Expression |
---|---|
mprgbir | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mprgbir.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝜓) | |
2 | 1 | rgen 3069 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜓 |
3 | mprgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) | |
4 | 2, 3 | mpbir 231 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 |
This theorem depends on definitions: df-bi 207 df-ral 3068 |
This theorem is referenced by: ss2rabi 4100 ssintub 4990 djussxp 5870 dmiin 5978 dfco2 6276 coiun 6287 tron 6418 onxpdisj 6521 epweon 7810 frrlem6 8332 frrlem7 8333 wfrrelOLD 8370 wfrdmssOLD 8371 tfrlem6 8438 oawordeulem 8610 sbthlem1 9149 marypha2lem1 9504 ttrclselem1 9794 rankval4 9936 tcwf 9952 inlresf 9983 inrresf 9985 fin23lem16 10404 fin23lem29 10410 fin23lem30 10411 itunitc 10490 acncc 10509 wfgru 10885 renfdisj 11350 ioomax 13482 iccmax 13483 hashgval2 14427 fsumcom2 15822 fprodcom2 16032 dfphi2 16821 oppccatf 17788 dmcoass 18133 letsr 18663 smndex2dnrinv 18950 efgsf 19771 lssuni 20960 lpival 21357 cnsubdrglem 21459 retos 21659 psr1baslem 22207 istopon 22939 neips 23142 filssufilg 23940 xrhmeo 24996 iscmet3i 25365 ehlbase 25468 ovolge0 25535 unidmvol 25595 resinf1o 26596 divlogrlim 26695 dvloglem 26708 logf1o2 26710 atansssdm 26994 ppiub 27266 bday1s 27894 lrrecse 27993 clwwlkn0 30060 sspval 30755 shintcli 31361 lnopco0i 32036 imaelshi 32090 nmopadjlem 32121 nmoptrii 32126 nmopcoi 32127 nmopcoadji 32133 idleop 32163 hmopidmchi 32183 hmopidmpji 32184 djussxp2 32666 xrsclat 32994 rearchi 33339 dmvlsiga 34093 sxbrsigalem0 34236 dya2iocucvr 34249 eulerpartlemgh 34343 bnj110 34834 subfacp1lem1 35147 erdszelem2 35160 dfon2lem3 35749 filnetlem2 36345 taupi 37289 cnviun 43612 coiun1 43614 comptiunov2i 43668 cotrcltrcl 43687 cotrclrcl 43704 ssrab2f 45019 iooinlbub 45419 stirlinglem14 46008 sssalgen 46256 fvmptrabdm 47208 unilbss 48549 |
Copyright terms: Public domain | W3C validator |