| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mprgbir | Structured version Visualization version GIF version | ||
| Description: Modus ponens on biconditional combined with restricted generalization. (Contributed by NM, 21-Mar-2004.) |
| Ref | Expression |
|---|---|
| mprgbir.1 | ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
| mprgbir.2 | ⊢ (𝑥 ∈ 𝐴 → 𝜓) |
| Ref | Expression |
|---|---|
| mprgbir | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mprgbir.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝜓) | |
| 2 | 1 | rgen 3046 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜓 |
| 3 | mprgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) | |
| 4 | 2, 3 | mpbir 231 | 1 ⊢ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 |
| This theorem depends on definitions: df-bi 207 df-ral 3045 |
| This theorem is referenced by: ss2rabi 4040 ssintub 4930 djussxp 5809 dmiin 5917 dfco2 6218 coiun 6229 tron 6355 onxpdisj 6460 epweon 7751 frrlem6 8270 frrlem7 8271 tfrlem6 8350 oawordeulem 8518 sbthlem1 9051 marypha2lem1 9386 ttrclselem1 9678 rankval4 9820 tcwf 9836 inlresf 9867 inrresf 9869 fin23lem16 10288 fin23lem29 10294 fin23lem30 10295 itunitc 10374 acncc 10393 wfgru 10769 renfdisj 11234 ioomax 13383 iccmax 13384 hashgval2 14343 fsumcom2 15740 fprodcom2 15950 dfphi2 16744 oppccatf 17689 dmcoass 18028 letsr 18552 smndex2dnrinv 18842 efgsf 19659 lssuni 20845 lpival 21234 cnsubdrglem 21335 retos 21527 psr1baslem 22069 istopon 22799 neips 23000 filssufilg 23798 xrhmeo 24844 iscmet3i 25212 ehlbase 25315 ovolge0 25382 unidmvol 25442 resinf1o 26445 divlogrlim 26544 dvloglem 26557 logf1o2 26559 atansssdm 26843 ppiub 27115 bday1s 27743 lrrecse 27849 clwwlkn0 29957 sspval 30652 shintcli 31258 lnopco0i 31933 imaelshi 31987 nmopadjlem 32018 nmoptrii 32023 nmopcoi 32024 nmopcoadji 32030 idleop 32060 hmopidmchi 32080 hmopidmpji 32081 djussxp2 32572 xrsclat 32949 rearchi 33317 dmvlsiga 34119 sxbrsigalem0 34262 dya2iocucvr 34275 eulerpartlemgh 34369 bnj110 34848 subfacp1lem1 35166 erdszelem2 35179 dfon2lem3 35773 filnetlem2 36367 taupi 37311 cnviun 43639 coiun1 43641 comptiunov2i 43695 cotrcltrcl 43714 cotrclrcl 43731 ssrab2f 45111 iooinlbub 45499 stirlinglem14 46085 sssalgen 46333 fvmptrabdm 47294 stgr0 47959 unilbss 48806 dfinito4 49490 |
| Copyright terms: Public domain | W3C validator |