| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mprgbir | Structured version Visualization version GIF version | ||
| Description: Modus ponens on biconditional combined with restricted generalization. (Contributed by NM, 21-Mar-2004.) |
| Ref | Expression |
|---|---|
| mprgbir.1 | ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
| mprgbir.2 | ⊢ (𝑥 ∈ 𝐴 → 𝜓) |
| Ref | Expression |
|---|---|
| mprgbir | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mprgbir.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝜓) | |
| 2 | 1 | rgen 3049 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜓 |
| 3 | mprgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) | |
| 4 | 2, 3 | mpbir 231 | 1 ⊢ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2111 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 |
| This theorem depends on definitions: df-bi 207 df-ral 3048 |
| This theorem is referenced by: ss2rabi 4023 ssintub 4914 djussxp 5784 dmiin 5892 dfco2 6192 coiun 6204 tron 6329 onxpdisj 6433 epweon 7708 frrlem6 8221 frrlem7 8222 tfrlem6 8301 oawordeulem 8469 sbthlem1 9000 marypha2lem1 9319 ttrclselem1 9615 rankval4 9760 tcwf 9776 inlresf 9807 inrresf 9809 fin23lem16 10226 fin23lem29 10232 fin23lem30 10233 itunitc 10312 acncc 10331 wfgru 10707 renfdisj 11172 ioomax 13322 iccmax 13323 hashgval2 14285 fsumcom2 15681 fprodcom2 15891 dfphi2 16685 oppccatf 17634 dmcoass 17973 letsr 18499 smndex2dnrinv 18823 efgsf 19641 lssuni 20872 lpival 21261 cnsubdrglem 21355 retos 21555 psr1baslem 22097 istopon 22827 neips 23028 filssufilg 23826 xrhmeo 24871 iscmet3i 25239 ehlbase 25342 ovolge0 25409 unidmvol 25469 resinf1o 26472 divlogrlim 26571 dvloglem 26584 logf1o2 26586 atansssdm 26870 ppiub 27142 bday1s 27775 lrrecse 27885 clwwlkn0 30008 sspval 30703 shintcli 31309 lnopco0i 31984 imaelshi 32038 nmopadjlem 32069 nmoptrii 32074 nmopcoi 32075 nmopcoadji 32081 idleop 32111 hmopidmchi 32131 hmopidmpji 32132 djussxp2 32630 xrsclat 32992 rearchi 33311 dmvlsiga 34142 sxbrsigalem0 34284 dya2iocucvr 34297 eulerpartlemgh 34391 bnj110 34870 subfacp1lem1 35223 erdszelem2 35236 dfon2lem3 35827 filnetlem2 36423 taupi 37367 cnviun 43753 coiun1 43755 comptiunov2i 43809 cotrcltrcl 43828 cotrclrcl 43845 ssrab2f 45224 iooinlbub 45611 stirlinglem14 46195 sssalgen 46443 fvmptrabdm 47403 stgr0 48070 unilbss 48928 dfinito4 49612 |
| Copyright terms: Public domain | W3C validator |