Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mprgbir | Structured version Visualization version GIF version |
Description: Modus ponens on biconditional combined with restricted generalization. (Contributed by NM, 21-Mar-2004.) |
Ref | Expression |
---|---|
mprgbir.1 | ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
mprgbir.2 | ⊢ (𝑥 ∈ 𝐴 → 𝜓) |
Ref | Expression |
---|---|
mprgbir | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mprgbir.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝜓) | |
2 | 1 | rgen 3073 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜓 |
3 | mprgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) | |
4 | 2, 3 | mpbir 230 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2108 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 |
This theorem depends on definitions: df-bi 206 df-ral 3068 |
This theorem is referenced by: ss2rabi 4006 rabxm 4317 ssintub 4894 djussxp 5743 dmiin 5851 dfco2 6138 coiun 6149 tron 6274 onxpdisj 6371 frrlem6 8078 frrlem7 8079 wfrrelOLD 8116 wfrdmssOLD 8117 tfrlem6 8184 oawordeulem 8347 sbthlem1 8823 marypha2lem1 9124 trpredlem1 9405 rankval4 9556 tcwf 9572 inlresf 9603 inrresf 9605 fin23lem16 10022 fin23lem29 10028 fin23lem30 10029 itunitc 10108 acncc 10127 wfgru 10503 renfdisj 10966 ioomax 13083 iccmax 13084 hashgval2 14021 fsumcom2 15414 fprodcom2 15622 dfphi2 16403 oppccatf 17356 dmcoass 17697 letsr 18226 smndex2dnrinv 18469 efgsf 19250 lssuni 20116 lpival 20429 cnsubdrglem 20561 retos 20735 psr1baslem 21266 istopon 21969 neips 22172 filssufilg 22970 xrhmeo 24015 iscmet3i 24381 ehlbase 24484 ovolge0 24550 unidmvol 24610 resinf1o 25597 divlogrlim 25695 dvloglem 25708 logf1o2 25710 atansssdm 25988 ppiub 26257 clwwlkn0 28293 sspval 28986 shintcli 29592 lnopco0i 30267 imaelshi 30321 nmopadjlem 30352 nmoptrii 30357 nmopcoi 30358 nmopcoadji 30364 idleop 30394 hmopidmchi 30414 hmopidmpji 30415 djussxp2 30886 xrsclat 31191 rearchi 31448 dmvlsiga 31997 sxbrsigalem0 32138 dya2iocucvr 32151 eulerpartlemgh 32245 bnj110 32738 subfacp1lem1 33041 erdszelem2 33054 dfon2lem3 33667 ttrclselem1 33711 bday1s 33952 lrrecse 34026 filnetlem2 34495 taupi 35421 cnviun 41147 coiun1 41149 comptiunov2i 41203 cotrcltrcl 41222 cotrclrcl 41239 ssrab2f 42555 iooinlbub 42929 stirlinglem14 43518 sssalgen 43764 fvmptrabdm 44672 unilbss 46051 |
Copyright terms: Public domain | W3C validator |