| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mprgbir | Structured version Visualization version GIF version | ||
| Description: Modus ponens on biconditional combined with restricted generalization. (Contributed by NM, 21-Mar-2004.) |
| Ref | Expression |
|---|---|
| mprgbir.1 | ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
| mprgbir.2 | ⊢ (𝑥 ∈ 𝐴 → 𝜓) |
| Ref | Expression |
|---|---|
| mprgbir | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mprgbir.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝜓) | |
| 2 | 1 | rgen 3046 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜓 |
| 3 | mprgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) | |
| 4 | 2, 3 | mpbir 231 | 1 ⊢ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 |
| This theorem depends on definitions: df-bi 207 df-ral 3045 |
| This theorem is referenced by: ss2rabi 4028 ssintub 4916 djussxp 5788 dmiin 5895 dfco2 6194 coiun 6205 tron 6330 onxpdisj 6434 epweon 7711 frrlem6 8224 frrlem7 8225 tfrlem6 8304 oawordeulem 8472 sbthlem1 9004 marypha2lem1 9325 ttrclselem1 9621 rankval4 9763 tcwf 9779 inlresf 9810 inrresf 9812 fin23lem16 10229 fin23lem29 10235 fin23lem30 10236 itunitc 10315 acncc 10334 wfgru 10710 renfdisj 11175 ioomax 13325 iccmax 13326 hashgval2 14285 fsumcom2 15681 fprodcom2 15891 dfphi2 16685 oppccatf 17634 dmcoass 17973 letsr 18499 smndex2dnrinv 18789 efgsf 19608 lssuni 20842 lpival 21231 cnsubdrglem 21325 retos 21525 psr1baslem 22067 istopon 22797 neips 22998 filssufilg 23796 xrhmeo 24842 iscmet3i 25210 ehlbase 25313 ovolge0 25380 unidmvol 25440 resinf1o 26443 divlogrlim 26542 dvloglem 26555 logf1o2 26557 atansssdm 26841 ppiub 27113 bday1s 27745 lrrecse 27854 clwwlkn0 29972 sspval 30667 shintcli 31273 lnopco0i 31948 imaelshi 32002 nmopadjlem 32033 nmoptrii 32038 nmopcoi 32039 nmopcoadji 32045 idleop 32075 hmopidmchi 32095 hmopidmpji 32096 djussxp2 32592 xrsclat 32966 rearchi 33284 dmvlsiga 34102 sxbrsigalem0 34245 dya2iocucvr 34258 eulerpartlemgh 34352 bnj110 34831 subfacp1lem1 35162 erdszelem2 35175 dfon2lem3 35769 filnetlem2 36363 taupi 37307 cnviun 43633 coiun1 43635 comptiunov2i 43689 cotrcltrcl 43708 cotrclrcl 43725 ssrab2f 45105 iooinlbub 45492 stirlinglem14 46078 sssalgen 46326 fvmptrabdm 47287 stgr0 47954 unilbss 48812 dfinito4 49496 |
| Copyright terms: Public domain | W3C validator |