| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mprgbir | Structured version Visualization version GIF version | ||
| Description: Modus ponens on biconditional combined with restricted generalization. (Contributed by NM, 21-Mar-2004.) |
| Ref | Expression |
|---|---|
| mprgbir.1 | ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
| mprgbir.2 | ⊢ (𝑥 ∈ 𝐴 → 𝜓) |
| Ref | Expression |
|---|---|
| mprgbir | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mprgbir.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝜓) | |
| 2 | 1 | rgen 3047 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜓 |
| 3 | mprgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) | |
| 4 | 2, 3 | mpbir 231 | 1 ⊢ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ∀wral 3045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 |
| This theorem depends on definitions: df-bi 207 df-ral 3046 |
| This theorem is referenced by: ss2rabi 4043 ssintub 4933 djussxp 5812 dmiin 5920 dfco2 6221 coiun 6232 tron 6358 onxpdisj 6463 epweon 7754 frrlem6 8273 frrlem7 8274 tfrlem6 8353 oawordeulem 8521 sbthlem1 9057 marypha2lem1 9393 ttrclselem1 9685 rankval4 9827 tcwf 9843 inlresf 9874 inrresf 9876 fin23lem16 10295 fin23lem29 10301 fin23lem30 10302 itunitc 10381 acncc 10400 wfgru 10776 renfdisj 11241 ioomax 13390 iccmax 13391 hashgval2 14350 fsumcom2 15747 fprodcom2 15957 dfphi2 16751 oppccatf 17696 dmcoass 18035 letsr 18559 smndex2dnrinv 18849 efgsf 19666 lssuni 20852 lpival 21241 cnsubdrglem 21342 retos 21534 psr1baslem 22076 istopon 22806 neips 23007 filssufilg 23805 xrhmeo 24851 iscmet3i 25219 ehlbase 25322 ovolge0 25389 unidmvol 25449 resinf1o 26452 divlogrlim 26551 dvloglem 26564 logf1o2 26566 atansssdm 26850 ppiub 27122 bday1s 27750 lrrecse 27856 clwwlkn0 29964 sspval 30659 shintcli 31265 lnopco0i 31940 imaelshi 31994 nmopadjlem 32025 nmoptrii 32030 nmopcoi 32031 nmopcoadji 32037 idleop 32067 hmopidmchi 32087 hmopidmpji 32088 djussxp2 32579 xrsclat 32956 rearchi 33324 dmvlsiga 34126 sxbrsigalem0 34269 dya2iocucvr 34282 eulerpartlemgh 34376 bnj110 34855 subfacp1lem1 35173 erdszelem2 35186 dfon2lem3 35780 filnetlem2 36374 taupi 37318 cnviun 43646 coiun1 43648 comptiunov2i 43702 cotrcltrcl 43721 cotrclrcl 43738 ssrab2f 45118 iooinlbub 45506 stirlinglem14 46092 sssalgen 46340 fvmptrabdm 47298 stgr0 47963 unilbss 48810 dfinito4 49494 |
| Copyright terms: Public domain | W3C validator |