Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mprgbir | Structured version Visualization version GIF version |
Description: Modus ponens on biconditional combined with restricted generalization. (Contributed by NM, 21-Mar-2004.) |
Ref | Expression |
---|---|
mprgbir.1 | ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
mprgbir.2 | ⊢ (𝑥 ∈ 𝐴 → 𝜓) |
Ref | Expression |
---|---|
mprgbir | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mprgbir.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝜓) | |
2 | 1 | rgen 3076 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜓 |
3 | mprgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) | |
4 | 2, 3 | mpbir 230 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2110 ∀wral 3066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 |
This theorem depends on definitions: df-bi 206 df-ral 3071 |
This theorem is referenced by: ss2rabi 4015 rabxm 4326 ssintub 4903 djussxp 5753 dmiin 5861 dfco2 6148 coiun 6159 tron 6288 onxpdisj 6385 epweon 7619 frrlem6 8098 frrlem7 8099 wfrrelOLD 8136 wfrdmssOLD 8137 tfrlem6 8204 oawordeulem 8370 sbthlem1 8852 marypha2lem1 9172 ttrclselem1 9461 trpredlem1 9474 rankval4 9626 tcwf 9642 inlresf 9673 inrresf 9675 fin23lem16 10092 fin23lem29 10098 fin23lem30 10099 itunitc 10178 acncc 10197 wfgru 10573 renfdisj 11036 ioomax 13153 iccmax 13154 hashgval2 14091 fsumcom2 15484 fprodcom2 15692 dfphi2 16473 oppccatf 17437 dmcoass 17779 letsr 18309 smndex2dnrinv 18552 efgsf 19333 lssuni 20199 lpival 20514 cnsubdrglem 20647 retos 20821 psr1baslem 21354 istopon 22059 neips 22262 filssufilg 23060 xrhmeo 24107 iscmet3i 24474 ehlbase 24577 ovolge0 24643 unidmvol 24703 resinf1o 25690 divlogrlim 25788 dvloglem 25801 logf1o2 25803 atansssdm 26081 ppiub 26350 clwwlkn0 28388 sspval 29081 shintcli 29687 lnopco0i 30362 imaelshi 30416 nmopadjlem 30447 nmoptrii 30452 nmopcoi 30453 nmopcoadji 30459 idleop 30489 hmopidmchi 30509 hmopidmpji 30510 djussxp2 30981 xrsclat 31285 rearchi 31542 dmvlsiga 32093 sxbrsigalem0 32234 dya2iocucvr 32247 eulerpartlemgh 32341 bnj110 32834 subfacp1lem1 33137 erdszelem2 33150 dfon2lem3 33757 bday1s 34021 lrrecse 34095 filnetlem2 34564 taupi 35490 cnviun 41228 coiun1 41230 comptiunov2i 41284 cotrcltrcl 41303 cotrclrcl 41320 ssrab2f 42636 iooinlbub 43010 stirlinglem14 43599 sssalgen 43845 fvmptrabdm 44753 unilbss 46132 |
Copyright terms: Public domain | W3C validator |