Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mprgbir | Structured version Visualization version GIF version |
Description: Modus ponens on biconditional combined with restricted generalization. (Contributed by NM, 21-Mar-2004.) |
Ref | Expression |
---|---|
mprgbir.1 | ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
mprgbir.2 | ⊢ (𝑥 ∈ 𝐴 → 𝜓) |
Ref | Expression |
---|---|
mprgbir | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mprgbir.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝜓) | |
2 | 1 | rgen 3075 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜓 |
3 | mprgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) | |
4 | 2, 3 | mpbir 230 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2107 ∀wral 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 |
This theorem depends on definitions: df-bi 206 df-ral 3070 |
This theorem is referenced by: ss2rabi 4011 rabxm 4321 ssintub 4898 djussxp 5757 dmiin 5865 dfco2 6153 coiun 6164 tron 6293 onxpdisj 6390 epweon 7634 frrlem6 8116 frrlem7 8117 wfrrelOLD 8154 wfrdmssOLD 8155 tfrlem6 8222 oawordeulem 8394 sbthlem1 8879 marypha2lem1 9203 ttrclselem1 9492 rankval4 9634 tcwf 9650 inlresf 9681 inrresf 9683 fin23lem16 10100 fin23lem29 10106 fin23lem30 10107 itunitc 10186 acncc 10205 wfgru 10581 renfdisj 11044 ioomax 13163 iccmax 13164 hashgval2 14102 fsumcom2 15495 fprodcom2 15703 dfphi2 16484 oppccatf 17448 dmcoass 17790 letsr 18320 smndex2dnrinv 18563 efgsf 19344 lssuni 20210 lpival 20525 cnsubdrglem 20658 retos 20832 psr1baslem 21365 istopon 22070 neips 22273 filssufilg 23071 xrhmeo 24118 iscmet3i 24485 ehlbase 24588 ovolge0 24654 unidmvol 24714 resinf1o 25701 divlogrlim 25799 dvloglem 25812 logf1o2 25814 atansssdm 26092 ppiub 26361 clwwlkn0 28401 sspval 29094 shintcli 29700 lnopco0i 30375 imaelshi 30429 nmopadjlem 30460 nmoptrii 30465 nmopcoi 30466 nmopcoadji 30472 idleop 30502 hmopidmchi 30522 hmopidmpji 30523 djussxp2 30994 xrsclat 31298 rearchi 31555 dmvlsiga 32106 sxbrsigalem0 32247 dya2iocucvr 32260 eulerpartlemgh 32354 bnj110 32847 subfacp1lem1 33150 erdszelem2 33163 dfon2lem3 33770 bday1s 34034 lrrecse 34108 filnetlem2 34577 taupi 35503 cnviun 41265 coiun1 41267 comptiunov2i 41321 cotrcltrcl 41340 cotrclrcl 41357 ssrab2f 42673 iooinlbub 43046 stirlinglem14 43635 sssalgen 43881 fvmptrabdm 44796 unilbss 46174 |
Copyright terms: Public domain | W3C validator |