Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mprgbir | Structured version Visualization version GIF version |
Description: Modus ponens on biconditional combined with restricted generalization. (Contributed by NM, 21-Mar-2004.) |
Ref | Expression |
---|---|
mprgbir.1 | ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
mprgbir.2 | ⊢ (𝑥 ∈ 𝐴 → 𝜓) |
Ref | Expression |
---|---|
mprgbir | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mprgbir.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝜓) | |
2 | 1 | rgen 3071 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜓 |
3 | mprgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) | |
4 | 2, 3 | mpbir 234 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∈ wcel 2110 ∀wral 3061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 |
This theorem depends on definitions: df-bi 210 df-ral 3066 |
This theorem is referenced by: ss2rabi 3990 rabxm 4301 ssintub 4877 djussxp 5714 dmiin 5822 dfco2 6109 coiun 6120 tron 6236 onxpdisj 6333 frrlem6 8032 frrlem7 8033 wfrrel 8060 wfrdmss 8061 tfrlem6 8118 oawordeulem 8282 sbthlem1 8756 marypha2lem1 9051 trpredlem1 9332 rankval4 9483 tcwf 9499 inlresf 9530 inrresf 9532 fin23lem16 9949 fin23lem29 9955 fin23lem30 9956 itunitc 10035 acncc 10054 wfgru 10430 renfdisj 10893 ioomax 13010 iccmax 13011 hashgval2 13945 fsumcom2 15338 fprodcom2 15546 dfphi2 16327 oppccatf 17232 dmcoass 17572 letsr 18099 smndex2dnrinv 18342 efgsf 19119 lssuni 19976 lpival 20283 cnsubdrglem 20414 retos 20580 psr1baslem 21106 istopon 21809 neips 22010 filssufilg 22808 xrhmeo 23843 iscmet3i 24209 ehlbase 24312 ovolge0 24378 unidmvol 24438 resinf1o 25425 divlogrlim 25523 dvloglem 25536 logf1o2 25538 atansssdm 25816 ppiub 26085 clwwlkn0 28111 sspval 28804 shintcli 29410 lnopco0i 30085 imaelshi 30139 nmopadjlem 30170 nmoptrii 30175 nmopcoi 30176 nmopcoadji 30182 idleop 30212 hmopidmchi 30232 hmopidmpji 30233 djussxp2 30704 xrsclat 31008 rearchi 31260 dmvlsiga 31809 sxbrsigalem0 31950 dya2iocucvr 31963 eulerpartlemgh 32057 bnj110 32551 subfacp1lem1 32854 erdszelem2 32867 dfon2lem3 33480 bday1s 33762 lrrecse 33836 filnetlem2 34305 taupi 35228 cnviun 40935 coiun1 40937 comptiunov2i 40991 cotrcltrcl 41010 cotrclrcl 41027 ssrab2f 42339 iooinlbub 42714 stirlinglem14 43303 sssalgen 43549 fvmptrabdm 44457 unilbss 45836 |
Copyright terms: Public domain | W3C validator |