![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mprgbir | Structured version Visualization version GIF version |
Description: Modus ponens on biconditional combined with restricted generalization. (Contributed by NM, 21-Mar-2004.) |
Ref | Expression |
---|---|
mprgbir.1 | ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
mprgbir.2 | ⊢ (𝑥 ∈ 𝐴 → 𝜓) |
Ref | Expression |
---|---|
mprgbir | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mprgbir.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝜓) | |
2 | 1 | rgen 3063 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜓 |
3 | mprgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) | |
4 | 2, 3 | mpbir 230 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2106 ∀wral 3061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 |
This theorem depends on definitions: df-bi 206 df-ral 3062 |
This theorem is referenced by: ss2rabi 4074 rabxm 4386 ssintub 4970 djussxp 5845 dmiin 5952 dfco2 6244 coiun 6255 tron 6387 onxpdisj 6490 epweon 7764 frrlem6 8278 frrlem7 8279 wfrrelOLD 8316 wfrdmssOLD 8317 tfrlem6 8384 oawordeulem 8556 sbthlem1 9085 marypha2lem1 9432 ttrclselem1 9722 rankval4 9864 tcwf 9880 inlresf 9911 inrresf 9913 fin23lem16 10332 fin23lem29 10338 fin23lem30 10339 itunitc 10418 acncc 10437 wfgru 10813 renfdisj 11276 ioomax 13401 iccmax 13402 hashgval2 14340 fsumcom2 15722 fprodcom2 15930 dfphi2 16709 oppccatf 17676 dmcoass 18018 letsr 18548 smndex2dnrinv 18798 efgsf 19599 lssuni 20555 lpival 20889 cnsubdrglem 21002 retos 21177 psr1baslem 21715 istopon 22421 neips 22624 filssufilg 23422 xrhmeo 24469 iscmet3i 24836 ehlbase 24939 ovolge0 25005 unidmvol 25065 resinf1o 26052 divlogrlim 26150 dvloglem 26163 logf1o2 26165 atansssdm 26445 ppiub 26714 bday1s 27340 lrrecse 27435 clwwlkn0 29319 sspval 30014 shintcli 30620 lnopco0i 31295 imaelshi 31349 nmopadjlem 31380 nmoptrii 31385 nmopcoi 31386 nmopcoadji 31392 idleop 31422 hmopidmchi 31442 hmopidmpji 31443 djussxp2 31911 xrsclat 32219 rearchi 32502 dmvlsiga 33196 sxbrsigalem0 33339 dya2iocucvr 33352 eulerpartlemgh 33446 bnj110 33938 subfacp1lem1 34239 erdszelem2 34252 dfon2lem3 34826 filnetlem2 35350 taupi 36290 cnviun 42483 coiun1 42485 comptiunov2i 42539 cotrcltrcl 42558 cotrclrcl 42575 ssrab2f 43888 iooinlbub 44293 stirlinglem14 44882 sssalgen 45130 fvmptrabdm 46080 unilbss 47580 |
Copyright terms: Public domain | W3C validator |