| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mprgbir | Structured version Visualization version GIF version | ||
| Description: Modus ponens on biconditional combined with restricted generalization. (Contributed by NM, 21-Mar-2004.) |
| Ref | Expression |
|---|---|
| mprgbir.1 | ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
| mprgbir.2 | ⊢ (𝑥 ∈ 𝐴 → 𝜓) |
| Ref | Expression |
|---|---|
| mprgbir | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mprgbir.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝜓) | |
| 2 | 1 | rgen 3046 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜓 |
| 3 | mprgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) | |
| 4 | 2, 3 | mpbir 231 | 1 ⊢ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 |
| This theorem depends on definitions: df-bi 207 df-ral 3045 |
| This theorem is referenced by: ss2rabi 4036 ssintub 4926 djussxp 5799 dmiin 5906 dfco2 6206 coiun 6217 tron 6343 onxpdisj 6448 epweon 7731 frrlem6 8247 frrlem7 8248 tfrlem6 8327 oawordeulem 8495 sbthlem1 9028 marypha2lem1 9362 ttrclselem1 9654 rankval4 9796 tcwf 9812 inlresf 9843 inrresf 9845 fin23lem16 10264 fin23lem29 10270 fin23lem30 10271 itunitc 10350 acncc 10369 wfgru 10745 renfdisj 11210 ioomax 13359 iccmax 13360 hashgval2 14319 fsumcom2 15716 fprodcom2 15926 dfphi2 16720 oppccatf 17669 dmcoass 18008 letsr 18534 smndex2dnrinv 18824 efgsf 19643 lssuni 20877 lpival 21266 cnsubdrglem 21360 retos 21560 psr1baslem 22102 istopon 22832 neips 23033 filssufilg 23831 xrhmeo 24877 iscmet3i 25245 ehlbase 25348 ovolge0 25415 unidmvol 25475 resinf1o 26478 divlogrlim 26577 dvloglem 26590 logf1o2 26592 atansssdm 26876 ppiub 27148 bday1s 27780 lrrecse 27889 clwwlkn0 30007 sspval 30702 shintcli 31308 lnopco0i 31983 imaelshi 32037 nmopadjlem 32068 nmoptrii 32073 nmopcoi 32074 nmopcoadji 32080 idleop 32110 hmopidmchi 32130 hmopidmpji 32131 djussxp2 32622 xrsclat 32995 rearchi 33310 dmvlsiga 34112 sxbrsigalem0 34255 dya2iocucvr 34268 eulerpartlemgh 34362 bnj110 34841 subfacp1lem1 35159 erdszelem2 35172 dfon2lem3 35766 filnetlem2 36360 taupi 37304 cnviun 43632 coiun1 43634 comptiunov2i 43688 cotrcltrcl 43707 cotrclrcl 43724 ssrab2f 45104 iooinlbub 45492 stirlinglem14 46078 sssalgen 46326 fvmptrabdm 47287 stgr0 47952 unilbss 48799 dfinito4 49483 |
| Copyright terms: Public domain | W3C validator |