Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ralndv2 Structured version   Visualization version   GIF version

Theorem ralndv2 44485
Description: Second example for a theorem about a restricted universal quantification in which the restricting class depends on the bound variable: all subsets of a set are sets. (Contributed by AV, 24-Jun-2023.)
Assertion
Ref Expression
ralndv2 𝑥 ∈ 𝒫 𝑥𝑥 ∈ V

Proof of Theorem ralndv2
StepHypRef Expression
1 vex 3426 . 2 𝑥 ∈ V
21rgenw 3075 1 𝑥 ∈ 𝒫 𝑥𝑥 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  wral 3063  Vcvv 3422  𝒫 cpw 4530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-v 3424
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator