![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > reuf1odnf | Structured version Visualization version GIF version |
Description: There is exactly one element in each of two isomorphic sets. Variant of reuf1od 42823 with no distinct variable condition for 𝜒. (Contributed by AV, 19-Mar-2023.) |
Ref | Expression |
---|---|
reuf1odnf.f | ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐵) |
reuf1odnf.x | ⊢ ((𝜑 ∧ 𝑥 = (𝐹‘𝑦)) → (𝜓 ↔ 𝜒)) |
reuf1odnf.z | ⊢ (𝑥 = 𝑧 → (𝜓 ↔ 𝜃)) |
reuf1odnf.n | ⊢ Ⅎ𝑥𝜒 |
Ref | Expression |
---|---|
reuf1odnf | ⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 𝜓 ↔ ∃!𝑦 ∈ 𝐶 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reuf1odnf.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐵) | |
2 | f1of 6483 | . . . . 5 ⊢ (𝐹:𝐶–1-1-onto→𝐵 → 𝐹:𝐶⟶𝐵) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:𝐶⟶𝐵) |
4 | 3 | ffvelrnda 6716 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → (𝐹‘𝑦) ∈ 𝐵) |
5 | f1ofveu 7011 | . . . . 5 ⊢ ((𝐹:𝐶–1-1-onto→𝐵 ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐶 (𝐹‘𝑦) = 𝑥) | |
6 | eqcom 2802 | . . . . . 6 ⊢ (𝑥 = (𝐹‘𝑦) ↔ (𝐹‘𝑦) = 𝑥) | |
7 | 6 | reubii 3351 | . . . . 5 ⊢ (∃!𝑦 ∈ 𝐶 𝑥 = (𝐹‘𝑦) ↔ ∃!𝑦 ∈ 𝐶 (𝐹‘𝑦) = 𝑥) |
8 | 5, 7 | sylibr 235 | . . . 4 ⊢ ((𝐹:𝐶–1-1-onto→𝐵 ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐶 𝑥 = (𝐹‘𝑦)) |
9 | 1, 8 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐶 𝑥 = (𝐹‘𝑦)) |
10 | sbceq1a 3717 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑦) → (𝜓 ↔ [(𝐹‘𝑦) / 𝑥]𝜓)) | |
11 | 10 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = (𝐹‘𝑦)) → (𝜓 ↔ [(𝐹‘𝑦) / 𝑥]𝜓)) |
12 | reuf1odnf.z | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝜓 ↔ 𝜃)) | |
13 | 12 | cbvsbcv 3736 | . . . 4 ⊢ ([(𝐹‘𝑦) / 𝑥]𝜓 ↔ [(𝐹‘𝑦) / 𝑧]𝜃) |
14 | 11, 13 | syl6bb 288 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = (𝐹‘𝑦)) → (𝜓 ↔ [(𝐹‘𝑦) / 𝑧]𝜃)) |
15 | 4, 9, 14 | reuxfr1d 3675 | . 2 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 𝜓 ↔ ∃!𝑦 ∈ 𝐶 [(𝐹‘𝑦) / 𝑧]𝜃)) |
16 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → ([(𝐹‘𝑦) / 𝑥]𝜓 ↔ [(𝐹‘𝑦) / 𝑧]𝜃)) |
17 | 16 | bicomd 224 | . . 3 ⊢ (𝜑 → ([(𝐹‘𝑦) / 𝑧]𝜃 ↔ [(𝐹‘𝑦) / 𝑥]𝜓)) |
18 | 17 | reubidv 3349 | . 2 ⊢ (𝜑 → (∃!𝑦 ∈ 𝐶 [(𝐹‘𝑦) / 𝑧]𝜃 ↔ ∃!𝑦 ∈ 𝐶 [(𝐹‘𝑦) / 𝑥]𝜓)) |
19 | fvexd 6553 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑦) ∈ V) | |
20 | reuf1odnf.x | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = (𝐹‘𝑦)) → (𝜓 ↔ 𝜒)) | |
21 | nfv 1892 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
22 | reuf1odnf.n | . . . . 5 ⊢ Ⅎ𝑥𝜒 | |
23 | 22 | a1i 11 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜒) |
24 | 19, 20, 21, 23 | sbciedf 3742 | . . 3 ⊢ (𝜑 → ([(𝐹‘𝑦) / 𝑥]𝜓 ↔ 𝜒)) |
25 | 24 | reubidv 3349 | . 2 ⊢ (𝜑 → (∃!𝑦 ∈ 𝐶 [(𝐹‘𝑦) / 𝑥]𝜓 ↔ ∃!𝑦 ∈ 𝐶 𝜒)) |
26 | 15, 18, 25 | 3bitrd 306 | 1 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 𝜓 ↔ ∃!𝑦 ∈ 𝐶 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1522 Ⅎwnf 1765 ∈ wcel 2081 ∃!wreu 3107 Vcvv 3437 [wsbc 3706 ⟶wf 6221 –1-1-onto→wf1o 6224 ‘cfv 6225 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3707 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-br 4963 df-opab 5025 df-id 5348 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 |
This theorem is referenced by: prproropreud 43153 |
Copyright terms: Public domain | W3C validator |