Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > reuf1odnf | Structured version Visualization version GIF version |
Description: There is exactly one element in each of two isomorphic sets. Variant of reuf1od 44579 with no distinct variable condition for 𝜒. (Contributed by AV, 19-Mar-2023.) |
Ref | Expression |
---|---|
reuf1odnf.f | ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐵) |
reuf1odnf.x | ⊢ ((𝜑 ∧ 𝑥 = (𝐹‘𝑦)) → (𝜓 ↔ 𝜒)) |
reuf1odnf.z | ⊢ (𝑥 = 𝑧 → (𝜓 ↔ 𝜃)) |
reuf1odnf.n | ⊢ Ⅎ𝑥𝜒 |
Ref | Expression |
---|---|
reuf1odnf | ⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 𝜓 ↔ ∃!𝑦 ∈ 𝐶 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reuf1odnf.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐵) | |
2 | f1of 6714 | . . . . 5 ⊢ (𝐹:𝐶–1-1-onto→𝐵 → 𝐹:𝐶⟶𝐵) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:𝐶⟶𝐵) |
4 | 3 | ffvelrnda 6958 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → (𝐹‘𝑦) ∈ 𝐵) |
5 | f1ofveu 7267 | . . . . 5 ⊢ ((𝐹:𝐶–1-1-onto→𝐵 ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐶 (𝐹‘𝑦) = 𝑥) | |
6 | eqcom 2747 | . . . . . 6 ⊢ (𝑥 = (𝐹‘𝑦) ↔ (𝐹‘𝑦) = 𝑥) | |
7 | 6 | reubii 3324 | . . . . 5 ⊢ (∃!𝑦 ∈ 𝐶 𝑥 = (𝐹‘𝑦) ↔ ∃!𝑦 ∈ 𝐶 (𝐹‘𝑦) = 𝑥) |
8 | 5, 7 | sylibr 233 | . . . 4 ⊢ ((𝐹:𝐶–1-1-onto→𝐵 ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐶 𝑥 = (𝐹‘𝑦)) |
9 | 1, 8 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐶 𝑥 = (𝐹‘𝑦)) |
10 | sbceq1a 3731 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑦) → (𝜓 ↔ [(𝐹‘𝑦) / 𝑥]𝜓)) | |
11 | 10 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = (𝐹‘𝑦)) → (𝜓 ↔ [(𝐹‘𝑦) / 𝑥]𝜓)) |
12 | reuf1odnf.z | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝜓 ↔ 𝜃)) | |
13 | 12 | cbvsbcvw 3755 | . . . 4 ⊢ ([(𝐹‘𝑦) / 𝑥]𝜓 ↔ [(𝐹‘𝑦) / 𝑧]𝜃) |
14 | 11, 13 | bitrdi 287 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = (𝐹‘𝑦)) → (𝜓 ↔ [(𝐹‘𝑦) / 𝑧]𝜃)) |
15 | 4, 9, 14 | reuxfr1d 3689 | . 2 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 𝜓 ↔ ∃!𝑦 ∈ 𝐶 [(𝐹‘𝑦) / 𝑧]𝜃)) |
16 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → ([(𝐹‘𝑦) / 𝑥]𝜓 ↔ [(𝐹‘𝑦) / 𝑧]𝜃)) |
17 | 16 | bicomd 222 | . . 3 ⊢ (𝜑 → ([(𝐹‘𝑦) / 𝑧]𝜃 ↔ [(𝐹‘𝑦) / 𝑥]𝜓)) |
18 | 17 | reubidv 3322 | . 2 ⊢ (𝜑 → (∃!𝑦 ∈ 𝐶 [(𝐹‘𝑦) / 𝑧]𝜃 ↔ ∃!𝑦 ∈ 𝐶 [(𝐹‘𝑦) / 𝑥]𝜓)) |
19 | fvexd 6786 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑦) ∈ V) | |
20 | reuf1odnf.x | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = (𝐹‘𝑦)) → (𝜓 ↔ 𝜒)) | |
21 | nfv 1921 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
22 | reuf1odnf.n | . . . . 5 ⊢ Ⅎ𝑥𝜒 | |
23 | 22 | a1i 11 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜒) |
24 | 19, 20, 21, 23 | sbciedf 3764 | . . 3 ⊢ (𝜑 → ([(𝐹‘𝑦) / 𝑥]𝜓 ↔ 𝜒)) |
25 | 24 | reubidv 3322 | . 2 ⊢ (𝜑 → (∃!𝑦 ∈ 𝐶 [(𝐹‘𝑦) / 𝑥]𝜓 ↔ ∃!𝑦 ∈ 𝐶 𝜒)) |
26 | 15, 18, 25 | 3bitrd 305 | 1 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 𝜓 ↔ ∃!𝑦 ∈ 𝐶 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 Ⅎwnf 1790 ∈ wcel 2110 ∃!wreu 3068 Vcvv 3431 [wsbc 3720 ⟶wf 6428 –1-1-onto→wf1o 6431 ‘cfv 6432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 |
This theorem is referenced by: prproropreud 44940 |
Copyright terms: Public domain | W3C validator |