| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reuf1odnf | Structured version Visualization version GIF version | ||
| Description: There is exactly one element in each of two isomorphic sets. Variant of reuf1od 47120 with no distinct variable condition for 𝜒. (Contributed by AV, 19-Mar-2023.) |
| Ref | Expression |
|---|---|
| reuf1odnf.f | ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐵) |
| reuf1odnf.x | ⊢ ((𝜑 ∧ 𝑥 = (𝐹‘𝑦)) → (𝜓 ↔ 𝜒)) |
| reuf1odnf.z | ⊢ (𝑥 = 𝑧 → (𝜓 ↔ 𝜃)) |
| reuf1odnf.n | ⊢ Ⅎ𝑥𝜒 |
| Ref | Expression |
|---|---|
| reuf1odnf | ⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 𝜓 ↔ ∃!𝑦 ∈ 𝐶 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reuf1odnf.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐵) | |
| 2 | f1of 6848 | . . . . 5 ⊢ (𝐹:𝐶–1-1-onto→𝐵 → 𝐹:𝐶⟶𝐵) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:𝐶⟶𝐵) |
| 4 | 3 | ffvelcdmda 7104 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → (𝐹‘𝑦) ∈ 𝐵) |
| 5 | f1ofveu 7425 | . . . . 5 ⊢ ((𝐹:𝐶–1-1-onto→𝐵 ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐶 (𝐹‘𝑦) = 𝑥) | |
| 6 | eqcom 2744 | . . . . . 6 ⊢ (𝑥 = (𝐹‘𝑦) ↔ (𝐹‘𝑦) = 𝑥) | |
| 7 | 6 | reubii 3389 | . . . . 5 ⊢ (∃!𝑦 ∈ 𝐶 𝑥 = (𝐹‘𝑦) ↔ ∃!𝑦 ∈ 𝐶 (𝐹‘𝑦) = 𝑥) |
| 8 | 5, 7 | sylibr 234 | . . . 4 ⊢ ((𝐹:𝐶–1-1-onto→𝐵 ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐶 𝑥 = (𝐹‘𝑦)) |
| 9 | 1, 8 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐶 𝑥 = (𝐹‘𝑦)) |
| 10 | sbceq1a 3799 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑦) → (𝜓 ↔ [(𝐹‘𝑦) / 𝑥]𝜓)) | |
| 11 | 10 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = (𝐹‘𝑦)) → (𝜓 ↔ [(𝐹‘𝑦) / 𝑥]𝜓)) |
| 12 | reuf1odnf.z | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝜓 ↔ 𝜃)) | |
| 13 | 12 | cbvsbcvw 3822 | . . . 4 ⊢ ([(𝐹‘𝑦) / 𝑥]𝜓 ↔ [(𝐹‘𝑦) / 𝑧]𝜃) |
| 14 | 11, 13 | bitrdi 287 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = (𝐹‘𝑦)) → (𝜓 ↔ [(𝐹‘𝑦) / 𝑧]𝜃)) |
| 15 | 4, 9, 14 | reuxfr1d 3756 | . 2 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 𝜓 ↔ ∃!𝑦 ∈ 𝐶 [(𝐹‘𝑦) / 𝑧]𝜃)) |
| 16 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → ([(𝐹‘𝑦) / 𝑥]𝜓 ↔ [(𝐹‘𝑦) / 𝑧]𝜃)) |
| 17 | 16 | bicomd 223 | . . 3 ⊢ (𝜑 → ([(𝐹‘𝑦) / 𝑧]𝜃 ↔ [(𝐹‘𝑦) / 𝑥]𝜓)) |
| 18 | 17 | reubidv 3398 | . 2 ⊢ (𝜑 → (∃!𝑦 ∈ 𝐶 [(𝐹‘𝑦) / 𝑧]𝜃 ↔ ∃!𝑦 ∈ 𝐶 [(𝐹‘𝑦) / 𝑥]𝜓)) |
| 19 | fvexd 6921 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑦) ∈ V) | |
| 20 | reuf1odnf.x | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = (𝐹‘𝑦)) → (𝜓 ↔ 𝜒)) | |
| 21 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 22 | reuf1odnf.n | . . . . 5 ⊢ Ⅎ𝑥𝜒 | |
| 23 | 22 | a1i 11 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| 24 | 19, 20, 21, 23 | sbciedf 3831 | . . 3 ⊢ (𝜑 → ([(𝐹‘𝑦) / 𝑥]𝜓 ↔ 𝜒)) |
| 25 | 24 | reubidv 3398 | . 2 ⊢ (𝜑 → (∃!𝑦 ∈ 𝐶 [(𝐹‘𝑦) / 𝑥]𝜓 ↔ ∃!𝑦 ∈ 𝐶 𝜒)) |
| 26 | 15, 18, 25 | 3bitrd 305 | 1 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 𝜓 ↔ ∃!𝑦 ∈ 𝐶 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 ∃!wreu 3378 Vcvv 3480 [wsbc 3788 ⟶wf 6557 –1-1-onto→wf1o 6560 ‘cfv 6561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 |
| This theorem is referenced by: prproropreud 47496 |
| Copyright terms: Public domain | W3C validator |