Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reuf1odnf Structured version   Visualization version   GIF version

Theorem reuf1odnf 47112
Description: There is exactly one element in each of two isomorphic sets. Variant of reuf1od 47113 with no distinct variable condition for 𝜒. (Contributed by AV, 19-Mar-2023.)
Hypotheses
Ref Expression
reuf1odnf.f (𝜑𝐹:𝐶1-1-onto𝐵)
reuf1odnf.x ((𝜑𝑥 = (𝐹𝑦)) → (𝜓𝜒))
reuf1odnf.z (𝑥 = 𝑧 → (𝜓𝜃))
reuf1odnf.n 𝑥𝜒
Assertion
Ref Expression
reuf1odnf (𝜑 → (∃!𝑥𝐵 𝜓 ↔ ∃!𝑦𝐶 𝜒))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦   𝜑,𝑥,𝑦   𝜓,𝑦   𝜓,𝑧   𝜃,𝑥   𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧)   𝜓(𝑥)   𝜒(𝑥,𝑦,𝑧)   𝜃(𝑦,𝑧)   𝐵(𝑧)   𝐶(𝑧)   𝐹(𝑧)

Proof of Theorem reuf1odnf
StepHypRef Expression
1 reuf1odnf.f . . . . 5 (𝜑𝐹:𝐶1-1-onto𝐵)
2 f1of 6803 . . . . 5 (𝐹:𝐶1-1-onto𝐵𝐹:𝐶𝐵)
31, 2syl 17 . . . 4 (𝜑𝐹:𝐶𝐵)
43ffvelcdmda 7059 . . 3 ((𝜑𝑦𝐶) → (𝐹𝑦) ∈ 𝐵)
5 f1ofveu 7384 . . . . 5 ((𝐹:𝐶1-1-onto𝐵𝑥𝐵) → ∃!𝑦𝐶 (𝐹𝑦) = 𝑥)
6 eqcom 2737 . . . . . 6 (𝑥 = (𝐹𝑦) ↔ (𝐹𝑦) = 𝑥)
76reubii 3365 . . . . 5 (∃!𝑦𝐶 𝑥 = (𝐹𝑦) ↔ ∃!𝑦𝐶 (𝐹𝑦) = 𝑥)
85, 7sylibr 234 . . . 4 ((𝐹:𝐶1-1-onto𝐵𝑥𝐵) → ∃!𝑦𝐶 𝑥 = (𝐹𝑦))
91, 8sylan 580 . . 3 ((𝜑𝑥𝐵) → ∃!𝑦𝐶 𝑥 = (𝐹𝑦))
10 sbceq1a 3767 . . . . 5 (𝑥 = (𝐹𝑦) → (𝜓[(𝐹𝑦) / 𝑥]𝜓))
1110adantl 481 . . . 4 ((𝜑𝑥 = (𝐹𝑦)) → (𝜓[(𝐹𝑦) / 𝑥]𝜓))
12 reuf1odnf.z . . . . 5 (𝑥 = 𝑧 → (𝜓𝜃))
1312cbvsbcvw 3790 . . . 4 ([(𝐹𝑦) / 𝑥]𝜓[(𝐹𝑦) / 𝑧]𝜃)
1411, 13bitrdi 287 . . 3 ((𝜑𝑥 = (𝐹𝑦)) → (𝜓[(𝐹𝑦) / 𝑧]𝜃))
154, 9, 14reuxfr1d 3724 . 2 (𝜑 → (∃!𝑥𝐵 𝜓 ↔ ∃!𝑦𝐶 [(𝐹𝑦) / 𝑧]𝜃))
1613a1i 11 . . . 4 (𝜑 → ([(𝐹𝑦) / 𝑥]𝜓[(𝐹𝑦) / 𝑧]𝜃))
1716bicomd 223 . . 3 (𝜑 → ([(𝐹𝑦) / 𝑧]𝜃[(𝐹𝑦) / 𝑥]𝜓))
1817reubidv 3374 . 2 (𝜑 → (∃!𝑦𝐶 [(𝐹𝑦) / 𝑧]𝜃 ↔ ∃!𝑦𝐶 [(𝐹𝑦) / 𝑥]𝜓))
19 fvexd 6876 . . . 4 (𝜑 → (𝐹𝑦) ∈ V)
20 reuf1odnf.x . . . 4 ((𝜑𝑥 = (𝐹𝑦)) → (𝜓𝜒))
21 nfv 1914 . . . 4 𝑥𝜑
22 reuf1odnf.n . . . . 5 𝑥𝜒
2322a1i 11 . . . 4 (𝜑 → Ⅎ𝑥𝜒)
2419, 20, 21, 23sbciedf 3799 . . 3 (𝜑 → ([(𝐹𝑦) / 𝑥]𝜓𝜒))
2524reubidv 3374 . 2 (𝜑 → (∃!𝑦𝐶 [(𝐹𝑦) / 𝑥]𝜓 ↔ ∃!𝑦𝐶 𝜒))
2615, 18, 253bitrd 305 1 (𝜑 → (∃!𝑥𝐵 𝜓 ↔ ∃!𝑦𝐶 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2109  ∃!wreu 3354  Vcvv 3450  [wsbc 3756  wf 6510  1-1-ontowf1o 6513  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522
This theorem is referenced by:  prproropreud  47514
  Copyright terms: Public domain W3C validator