Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > reuf1odnf | Structured version Visualization version GIF version |
Description: There is exactly one element in each of two isomorphic sets. Variant of reuf1od 44600 with no distinct variable condition for 𝜒. (Contributed by AV, 19-Mar-2023.) |
Ref | Expression |
---|---|
reuf1odnf.f | ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐵) |
reuf1odnf.x | ⊢ ((𝜑 ∧ 𝑥 = (𝐹‘𝑦)) → (𝜓 ↔ 𝜒)) |
reuf1odnf.z | ⊢ (𝑥 = 𝑧 → (𝜓 ↔ 𝜃)) |
reuf1odnf.n | ⊢ Ⅎ𝑥𝜒 |
Ref | Expression |
---|---|
reuf1odnf | ⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 𝜓 ↔ ∃!𝑦 ∈ 𝐶 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reuf1odnf.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐵) | |
2 | f1of 6716 | . . . . 5 ⊢ (𝐹:𝐶–1-1-onto→𝐵 → 𝐹:𝐶⟶𝐵) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:𝐶⟶𝐵) |
4 | 3 | ffvelrnda 6961 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → (𝐹‘𝑦) ∈ 𝐵) |
5 | f1ofveu 7270 | . . . . 5 ⊢ ((𝐹:𝐶–1-1-onto→𝐵 ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐶 (𝐹‘𝑦) = 𝑥) | |
6 | eqcom 2745 | . . . . . 6 ⊢ (𝑥 = (𝐹‘𝑦) ↔ (𝐹‘𝑦) = 𝑥) | |
7 | 6 | reubii 3325 | . . . . 5 ⊢ (∃!𝑦 ∈ 𝐶 𝑥 = (𝐹‘𝑦) ↔ ∃!𝑦 ∈ 𝐶 (𝐹‘𝑦) = 𝑥) |
8 | 5, 7 | sylibr 233 | . . . 4 ⊢ ((𝐹:𝐶–1-1-onto→𝐵 ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐶 𝑥 = (𝐹‘𝑦)) |
9 | 1, 8 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐶 𝑥 = (𝐹‘𝑦)) |
10 | sbceq1a 3727 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑦) → (𝜓 ↔ [(𝐹‘𝑦) / 𝑥]𝜓)) | |
11 | 10 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = (𝐹‘𝑦)) → (𝜓 ↔ [(𝐹‘𝑦) / 𝑥]𝜓)) |
12 | reuf1odnf.z | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝜓 ↔ 𝜃)) | |
13 | 12 | cbvsbcvw 3751 | . . . 4 ⊢ ([(𝐹‘𝑦) / 𝑥]𝜓 ↔ [(𝐹‘𝑦) / 𝑧]𝜃) |
14 | 11, 13 | bitrdi 287 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = (𝐹‘𝑦)) → (𝜓 ↔ [(𝐹‘𝑦) / 𝑧]𝜃)) |
15 | 4, 9, 14 | reuxfr1d 3685 | . 2 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 𝜓 ↔ ∃!𝑦 ∈ 𝐶 [(𝐹‘𝑦) / 𝑧]𝜃)) |
16 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → ([(𝐹‘𝑦) / 𝑥]𝜓 ↔ [(𝐹‘𝑦) / 𝑧]𝜃)) |
17 | 16 | bicomd 222 | . . 3 ⊢ (𝜑 → ([(𝐹‘𝑦) / 𝑧]𝜃 ↔ [(𝐹‘𝑦) / 𝑥]𝜓)) |
18 | 17 | reubidv 3323 | . 2 ⊢ (𝜑 → (∃!𝑦 ∈ 𝐶 [(𝐹‘𝑦) / 𝑧]𝜃 ↔ ∃!𝑦 ∈ 𝐶 [(𝐹‘𝑦) / 𝑥]𝜓)) |
19 | fvexd 6789 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑦) ∈ V) | |
20 | reuf1odnf.x | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = (𝐹‘𝑦)) → (𝜓 ↔ 𝜒)) | |
21 | nfv 1917 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
22 | reuf1odnf.n | . . . . 5 ⊢ Ⅎ𝑥𝜒 | |
23 | 22 | a1i 11 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜒) |
24 | 19, 20, 21, 23 | sbciedf 3760 | . . 3 ⊢ (𝜑 → ([(𝐹‘𝑦) / 𝑥]𝜓 ↔ 𝜒)) |
25 | 24 | reubidv 3323 | . 2 ⊢ (𝜑 → (∃!𝑦 ∈ 𝐶 [(𝐹‘𝑦) / 𝑥]𝜓 ↔ ∃!𝑦 ∈ 𝐶 𝜒)) |
26 | 15, 18, 25 | 3bitrd 305 | 1 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 𝜓 ↔ ∃!𝑦 ∈ 𝐶 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2106 ∃!wreu 3066 Vcvv 3432 [wsbc 3716 ⟶wf 6429 –1-1-onto→wf1o 6432 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 |
This theorem is referenced by: prproropreud 44961 |
Copyright terms: Public domain | W3C validator |