Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reuf1odnf Structured version   Visualization version   GIF version

Theorem reuf1odnf 47022
Description: There is exactly one element in each of two isomorphic sets. Variant of reuf1od 47023 with no distinct variable condition for 𝜒. (Contributed by AV, 19-Mar-2023.)
Hypotheses
Ref Expression
reuf1odnf.f (𝜑𝐹:𝐶1-1-onto𝐵)
reuf1odnf.x ((𝜑𝑥 = (𝐹𝑦)) → (𝜓𝜒))
reuf1odnf.z (𝑥 = 𝑧 → (𝜓𝜃))
reuf1odnf.n 𝑥𝜒
Assertion
Ref Expression
reuf1odnf (𝜑 → (∃!𝑥𝐵 𝜓 ↔ ∃!𝑦𝐶 𝜒))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦   𝜑,𝑥,𝑦   𝜓,𝑦   𝜓,𝑧   𝜃,𝑥   𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧)   𝜓(𝑥)   𝜒(𝑥,𝑦,𝑧)   𝜃(𝑦,𝑧)   𝐵(𝑧)   𝐶(𝑧)   𝐹(𝑧)

Proof of Theorem reuf1odnf
StepHypRef Expression
1 reuf1odnf.f . . . . 5 (𝜑𝐹:𝐶1-1-onto𝐵)
2 f1of 6862 . . . . 5 (𝐹:𝐶1-1-onto𝐵𝐹:𝐶𝐵)
31, 2syl 17 . . . 4 (𝜑𝐹:𝐶𝐵)
43ffvelcdmda 7118 . . 3 ((𝜑𝑦𝐶) → (𝐹𝑦) ∈ 𝐵)
5 f1ofveu 7442 . . . . 5 ((𝐹:𝐶1-1-onto𝐵𝑥𝐵) → ∃!𝑦𝐶 (𝐹𝑦) = 𝑥)
6 eqcom 2747 . . . . . 6 (𝑥 = (𝐹𝑦) ↔ (𝐹𝑦) = 𝑥)
76reubii 3397 . . . . 5 (∃!𝑦𝐶 𝑥 = (𝐹𝑦) ↔ ∃!𝑦𝐶 (𝐹𝑦) = 𝑥)
85, 7sylibr 234 . . . 4 ((𝐹:𝐶1-1-onto𝐵𝑥𝐵) → ∃!𝑦𝐶 𝑥 = (𝐹𝑦))
91, 8sylan 579 . . 3 ((𝜑𝑥𝐵) → ∃!𝑦𝐶 𝑥 = (𝐹𝑦))
10 sbceq1a 3815 . . . . 5 (𝑥 = (𝐹𝑦) → (𝜓[(𝐹𝑦) / 𝑥]𝜓))
1110adantl 481 . . . 4 ((𝜑𝑥 = (𝐹𝑦)) → (𝜓[(𝐹𝑦) / 𝑥]𝜓))
12 reuf1odnf.z . . . . 5 (𝑥 = 𝑧 → (𝜓𝜃))
1312cbvsbcvw 3839 . . . 4 ([(𝐹𝑦) / 𝑥]𝜓[(𝐹𝑦) / 𝑧]𝜃)
1411, 13bitrdi 287 . . 3 ((𝜑𝑥 = (𝐹𝑦)) → (𝜓[(𝐹𝑦) / 𝑧]𝜃))
154, 9, 14reuxfr1d 3772 . 2 (𝜑 → (∃!𝑥𝐵 𝜓 ↔ ∃!𝑦𝐶 [(𝐹𝑦) / 𝑧]𝜃))
1613a1i 11 . . . 4 (𝜑 → ([(𝐹𝑦) / 𝑥]𝜓[(𝐹𝑦) / 𝑧]𝜃))
1716bicomd 223 . . 3 (𝜑 → ([(𝐹𝑦) / 𝑧]𝜃[(𝐹𝑦) / 𝑥]𝜓))
1817reubidv 3406 . 2 (𝜑 → (∃!𝑦𝐶 [(𝐹𝑦) / 𝑧]𝜃 ↔ ∃!𝑦𝐶 [(𝐹𝑦) / 𝑥]𝜓))
19 fvexd 6935 . . . 4 (𝜑 → (𝐹𝑦) ∈ V)
20 reuf1odnf.x . . . 4 ((𝜑𝑥 = (𝐹𝑦)) → (𝜓𝜒))
21 nfv 1913 . . . 4 𝑥𝜑
22 reuf1odnf.n . . . . 5 𝑥𝜒
2322a1i 11 . . . 4 (𝜑 → Ⅎ𝑥𝜒)
2419, 20, 21, 23sbciedf 3849 . . 3 (𝜑 → ([(𝐹𝑦) / 𝑥]𝜓𝜒))
2524reubidv 3406 . 2 (𝜑 → (∃!𝑦𝐶 [(𝐹𝑦) / 𝑥]𝜓 ↔ ∃!𝑦𝐶 𝜒))
2615, 18, 253bitrd 305 1 (𝜑 → (∃!𝑥𝐵 𝜓 ↔ ∃!𝑦𝐶 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wnf 1781  wcel 2108  ∃!wreu 3386  Vcvv 3488  [wsbc 3804  wf 6569  1-1-ontowf1o 6572  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581
This theorem is referenced by:  prproropreud  47383
  Copyright terms: Public domain W3C validator