![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ralndv1 | Structured version Visualization version GIF version |
Description: Example for a theorem about a restricted universal quantification in which the restricting class depends on (actually is) the bound variable: All sets containing themselves contain the universal class. (Contributed by AV, 24-Jun-2023.) |
Ref | Expression |
---|---|
ralndv1 | ⊢ ∀𝑥 ∈ 𝑥 V ∈ 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirrv 9665 | . . 3 ⊢ ¬ 𝑥 ∈ 𝑥 | |
2 | 1 | pm2.21i 119 | . 2 ⊢ (𝑥 ∈ 𝑥 → V ∈ 𝑥) |
3 | 2 | rgen 3069 | 1 ⊢ ∀𝑥 ∈ 𝑥 V ∈ 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ∀wral 3067 Vcvv 3488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-pr 5447 ax-reg 9661 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-v 3490 df-un 3981 df-sn 4649 df-pr 4651 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |