Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ralndv1 Structured version   Visualization version   GIF version

Theorem ralndv1 45803
Description: Example for a theorem about a restricted universal quantification in which the restricting class depends on (actually is) the bound variable: All sets containing themselves contain the universal class. (Contributed by AV, 24-Jun-2023.)
Assertion
Ref Expression
ralndv1 𝑥𝑥 V ∈ 𝑥

Proof of Theorem ralndv1
StepHypRef Expression
1 elirrv 9590 . . 3 ¬ 𝑥𝑥
21pm2.21i 119 . 2 (𝑥𝑥 → V ∈ 𝑥)
32rgen 3063 1 𝑥𝑥 V ∈ 𝑥
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  wral 3061  Vcvv 3474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-pr 5427  ax-reg 9586
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-v 3476  df-un 3953  df-sn 4629  df-pr 4631
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator