Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ralndv1 Structured version   Visualization version   GIF version

Theorem ralndv1 46487
Description: Example for a theorem about a restricted universal quantification in which the restricting class depends on (actually is) the bound variable: All sets containing themselves contain the universal class. (Contributed by AV, 24-Jun-2023.)
Assertion
Ref Expression
ralndv1 𝑥𝑥 V ∈ 𝑥

Proof of Theorem ralndv1
StepHypRef Expression
1 elirrv 9625 . . 3 ¬ 𝑥𝑥
21pm2.21i 119 . 2 (𝑥𝑥 → V ∈ 𝑥)
32rgen 3059 1 𝑥𝑥 V ∈ 𝑥
Colors of variables: wff setvar class
Syntax hints:  wcel 2098  wral 3057  Vcvv 3471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-pr 5431  ax-reg 9621
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2705  df-cleq 2719  df-clel 2805  df-ral 3058  df-rex 3067  df-v 3473  df-un 3952  df-sn 4631  df-pr 4633
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator