| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > refrelredund2 | Structured version Visualization version GIF version | ||
| Description: The naive version of the definition of reflexive relation is redundant with respect to reflexive relation (see dfrefrel2 38506) in equivalence relation. (Contributed by Peter Mazsa, 25-Oct-2022.) |
| Ref | Expression |
|---|---|
| refrelredund2 | ⊢ redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | refrelredund4 38626 | . 2 ⊢ redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, ( RefRel 𝑅 ∧ SymRel 𝑅)) | |
| 2 | df-eqvrel 38576 | . . . 4 ⊢ ( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅)) | |
| 3 | 3simpa 1148 | . . . 4 ⊢ (( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅) → ( RefRel 𝑅 ∧ SymRel 𝑅)) | |
| 4 | 2, 3 | sylbi 217 | . . 3 ⊢ ( EqvRel 𝑅 → ( RefRel 𝑅 ∧ SymRel 𝑅)) |
| 5 | 4 | redundpim3 38621 | . 2 ⊢ ( redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, ( RefRel 𝑅 ∧ SymRel 𝑅)) → redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅)) |
| 6 | 1, 5 | ax-mp 5 | 1 ⊢ redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 ⊆ wss 3914 I cid 5532 dom cdm 5638 ↾ cres 5640 Rel wrel 5643 RefRel wrefrel 38175 SymRel wsymrel 38181 TrRel wtrrel 38184 EqvRel weqvrel 38186 redund wredundp 38191 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-refrel 38503 df-symrel 38535 df-eqvrel 38576 df-redundp 38616 |
| This theorem is referenced by: refrelredund3 38628 |
| Copyright terms: Public domain | W3C validator |