|   | Mathbox for Peter Mazsa | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > refrelredund2 | Structured version Visualization version GIF version | ||
| Description: The naive version of the definition of reflexive relation is redundant with respect to reflexive relation (see dfrefrel2 38517) in equivalence relation. (Contributed by Peter Mazsa, 25-Oct-2022.) | 
| Ref | Expression | 
|---|---|
| refrelredund2 | ⊢ redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | refrelredund4 38637 | . 2 ⊢ redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, ( RefRel 𝑅 ∧ SymRel 𝑅)) | |
| 2 | df-eqvrel 38587 | . . . 4 ⊢ ( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅)) | |
| 3 | 3simpa 1148 | . . . 4 ⊢ (( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅) → ( RefRel 𝑅 ∧ SymRel 𝑅)) | |
| 4 | 2, 3 | sylbi 217 | . . 3 ⊢ ( EqvRel 𝑅 → ( RefRel 𝑅 ∧ SymRel 𝑅)) | 
| 5 | 4 | redundpim3 38632 | . 2 ⊢ ( redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, ( RefRel 𝑅 ∧ SymRel 𝑅)) → redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅)) | 
| 6 | 1, 5 | ax-mp 5 | 1 ⊢ redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ∧ wa 395 ∧ w3a 1086 ⊆ wss 3950 I cid 5576 dom cdm 5684 ↾ cres 5686 Rel wrel 5689 RefRel wrefrel 38189 SymRel wsymrel 38195 TrRel wtrrel 38198 EqvRel weqvrel 38200 redund wredundp 38205 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-dm 5694 df-rn 5695 df-res 5696 df-refrel 38514 df-symrel 38546 df-eqvrel 38587 df-redundp 38627 | 
| This theorem is referenced by: refrelredund3 38639 | 
| Copyright terms: Public domain | W3C validator |