Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refrelredund2 Structured version   Visualization version   GIF version

Theorem refrelredund2 37506
Description: The naive version of the definition of reflexive relation is redundant with respect to reflexive relation (see dfrefrel2 37385) in equivalence relation. (Contributed by Peter Mazsa, 25-Oct-2022.)
Assertion
Ref Expression
refrelredund2 redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅)

Proof of Theorem refrelredund2
StepHypRef Expression
1 refrelredund4 37505 . 2 redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, ( RefRel 𝑅 ∧ SymRel 𝑅))
2 df-eqvrel 37455 . . . 4 ( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅))
3 3simpa 1149 . . . 4 (( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅) → ( RefRel 𝑅 ∧ SymRel 𝑅))
42, 3sylbi 216 . . 3 ( EqvRel 𝑅 → ( RefRel 𝑅 ∧ SymRel 𝑅))
54redundpim3 37500 . 2 ( redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, ( RefRel 𝑅 ∧ SymRel 𝑅)) → redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅))
61, 5ax-mp 5 1 redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wa 397  w3a 1088  wss 3949   I cid 5574  dom cdm 5677  cres 5679  Rel wrel 5682   RefRel wrefrel 37049   SymRel wsymrel 37055   TrRel wtrrel 37058   EqvRel weqvrel 37060   redund wredundp 37065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-dm 5687  df-rn 5688  df-res 5689  df-refrel 37382  df-symrel 37414  df-eqvrel 37455  df-redundp 37495
This theorem is referenced by:  refrelredund3  37507
  Copyright terms: Public domain W3C validator