Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > refrelredund2 | Structured version Visualization version GIF version |
Description: The naive version of the definition of reflexive relation is redundant with respect to reflexive relation (see dfrefrel2 36633) in equivalence relation. (Contributed by Peter Mazsa, 25-Oct-2022.) |
Ref | Expression |
---|---|
refrelredund2 | ⊢ redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | refrelredund4 36748 | . 2 ⊢ redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, ( RefRel 𝑅 ∧ SymRel 𝑅)) | |
2 | df-eqvrel 36698 | . . . 4 ⊢ ( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅)) | |
3 | 3simpa 1147 | . . . 4 ⊢ (( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅) → ( RefRel 𝑅 ∧ SymRel 𝑅)) | |
4 | 2, 3 | sylbi 216 | . . 3 ⊢ ( EqvRel 𝑅 → ( RefRel 𝑅 ∧ SymRel 𝑅)) |
5 | 4 | redundpim3 36743 | . 2 ⊢ ( redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, ( RefRel 𝑅 ∧ SymRel 𝑅)) → redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅)) |
6 | 1, 5 | ax-mp 5 | 1 ⊢ redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∧ w3a 1086 ⊆ wss 3887 I cid 5488 dom cdm 5589 ↾ cres 5591 Rel wrel 5594 RefRel wrefrel 36339 SymRel wsymrel 36345 TrRel wtrrel 36348 EqvRel weqvrel 36350 redund wredundp 36355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-refrel 36630 df-symrel 36658 df-eqvrel 36698 df-redundp 36738 |
This theorem is referenced by: refrelredund3 36750 |
Copyright terms: Public domain | W3C validator |