Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refrelredund2 Structured version   Visualization version   GIF version

Theorem refrelredund2 38032
Description: The naive version of the definition of reflexive relation is redundant with respect to reflexive relation (see dfrefrel2 37911) in equivalence relation. (Contributed by Peter Mazsa, 25-Oct-2022.)
Assertion
Ref Expression
refrelredund2 redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅)

Proof of Theorem refrelredund2
StepHypRef Expression
1 refrelredund4 38031 . 2 redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, ( RefRel 𝑅 ∧ SymRel 𝑅))
2 df-eqvrel 37981 . . . 4 ( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅))
3 3simpa 1146 . . . 4 (( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅) → ( RefRel 𝑅 ∧ SymRel 𝑅))
42, 3sylbi 216 . . 3 ( EqvRel 𝑅 → ( RefRel 𝑅 ∧ SymRel 𝑅))
54redundpim3 38026 . 2 ( redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, ( RefRel 𝑅 ∧ SymRel 𝑅)) → redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅))
61, 5ax-mp 5 1 redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1085  wss 3944   I cid 5569  dom cdm 5672  cres 5674  Rel wrel 5677   RefRel wrefrel 37576   SymRel wsymrel 37582   TrRel wtrrel 37585   EqvRel weqvrel 37587   redund wredundp 37592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5143  df-opab 5205  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-dm 5682  df-rn 5683  df-res 5684  df-refrel 37908  df-symrel 37940  df-eqvrel 37981  df-redundp 38021
This theorem is referenced by:  refrelredund3  38033
  Copyright terms: Public domain W3C validator