![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > refrelredund2 | Structured version Visualization version GIF version |
Description: The naive version of the definition of reflexive relation is redundant with respect to reflexive relation (see dfrefrel2 38471) in equivalence relation. (Contributed by Peter Mazsa, 25-Oct-2022.) |
Ref | Expression |
---|---|
refrelredund2 | ⊢ redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | refrelredund4 38591 | . 2 ⊢ redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, ( RefRel 𝑅 ∧ SymRel 𝑅)) | |
2 | df-eqvrel 38541 | . . . 4 ⊢ ( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅)) | |
3 | 3simpa 1148 | . . . 4 ⊢ (( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅) → ( RefRel 𝑅 ∧ SymRel 𝑅)) | |
4 | 2, 3 | sylbi 217 | . . 3 ⊢ ( EqvRel 𝑅 → ( RefRel 𝑅 ∧ SymRel 𝑅)) |
5 | 4 | redundpim3 38586 | . 2 ⊢ ( redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, ( RefRel 𝑅 ∧ SymRel 𝑅)) → redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅)) |
6 | 1, 5 | ax-mp 5 | 1 ⊢ redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∧ w3a 1087 ⊆ wss 3976 I cid 5592 dom cdm 5700 ↾ cres 5702 Rel wrel 5705 RefRel wrefrel 38141 SymRel wsymrel 38147 TrRel wtrrel 38150 EqvRel weqvrel 38152 redund wredundp 38157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-refrel 38468 df-symrel 38500 df-eqvrel 38541 df-redundp 38581 |
This theorem is referenced by: refrelredund3 38593 |
Copyright terms: Public domain | W3C validator |