Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refrelredund2 Structured version   Visualization version   GIF version

Theorem refrelredund2 38659
Description: The naive version of the definition of reflexive relation is redundant with respect to reflexive relation (see dfrefrel2 38538) in equivalence relation. (Contributed by Peter Mazsa, 25-Oct-2022.)
Assertion
Ref Expression
refrelredund2 redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅)

Proof of Theorem refrelredund2
StepHypRef Expression
1 refrelredund4 38658 . 2 redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, ( RefRel 𝑅 ∧ SymRel 𝑅))
2 df-eqvrel 38608 . . . 4 ( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅))
3 3simpa 1148 . . . 4 (( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅) → ( RefRel 𝑅 ∧ SymRel 𝑅))
42, 3sylbi 217 . . 3 ( EqvRel 𝑅 → ( RefRel 𝑅 ∧ SymRel 𝑅))
54redundpim3 38653 . 2 ( redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, ( RefRel 𝑅 ∧ SymRel 𝑅)) → redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅))
61, 5ax-mp 5 1 redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086  wss 3931   I cid 5552  dom cdm 5659  cres 5661  Rel wrel 5664   RefRel wrefrel 38210   SymRel wsymrel 38216   TrRel wtrrel 38219   EqvRel weqvrel 38221   redund wredundp 38226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-dm 5669  df-rn 5670  df-res 5671  df-refrel 38535  df-symrel 38567  df-eqvrel 38608  df-redundp 38648
This theorem is referenced by:  refrelredund3  38660
  Copyright terms: Public domain W3C validator