MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexeqtrdv Structured version   Visualization version   GIF version

Theorem rexeqtrdv 3313
Description: Substitution of equal classes into a restricted existential quantifier. (Contributed by Matthew House, 21-Jul-2025.)
Hypotheses
Ref Expression
rexeqtrdv.1 (𝜑 → ∃𝑥𝐴 𝜓)
rexeqtrdv.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
rexeqtrdv (𝜑 → ∃𝑥𝐵 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem rexeqtrdv
StepHypRef Expression
1 rexeqtrdv.1 . 2 (𝜑 → ∃𝑥𝐴 𝜓)
2 rexeqtrdv.2 . . 3 (𝜑𝐴 = 𝐵)
32rexeqdv 3311 . 2 (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐵 𝜓))
41, 3mpbid 232 1 (𝜑 → ∃𝑥𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wrex 3059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-cleq 2726  df-rex 3060
This theorem is referenced by:  ballotlemfc0  34436  ballotlemfcc  34437  lkrlspeqN  39113
  Copyright terms: Public domain W3C validator