| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raleqtrrdv | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into a restricted universal quantifier. (Contributed by Matthew House, 21-Jul-2025.) |
| Ref | Expression |
|---|---|
| raleqtrrdv.1 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| raleqtrrdv.2 | ⊢ (𝜑 → 𝐵 = 𝐴) |
| Ref | Expression |
|---|---|
| raleqtrrdv | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqtrrdv.1 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | |
| 2 | raleqtrrdv.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
| 3 | 2 | raleqdv 3290 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜓)) |
| 4 | 1, 3 | mpbird 257 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∀wral 3045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2722 df-ral 3046 df-rex 3055 |
| This theorem is referenced by: fveqressseq 7007 prmind2 16588 symgfixf1 19342 efgsp1 19642 efgsres 19643 ablfac2 19996 cncnp 23188 prdsxmslem2 24437 cnmpopc 24842 pi1coghm 24981 dvivthlem1 25933 iblulm 26336 xrlimcnp 26898 2sqlem10 27359 usgr1e 29216 cusgrexi 29414 1hevtxdg0 29477 crctcshwlkn0lem7 29787 wlkiswwlksupgr2 29848 wwlksnext 29864 clwwlkccatlem 29959 clwlkclwwlklem2a1 29962 clwlkclwwlkf1lem3 29976 wwlksext2clwwlk 30027 wwlksubclwwlk 30028 clwwlknonex2 30079 1wlkdlem4 30110 fnpreimac 32643 eulerpartlemsv3 34364 bnj1514 35065 exidreslem 37896 exidresid 37898 sticksstones11 42168 lpirlnr 43129 oaun3lem1 43386 fourierdlem73 46196 linds0 48476 |
| Copyright terms: Public domain | W3C validator |