| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raleqtrrdv | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into a restricted universal quantifier. (Contributed by Matthew House, 21-Jul-2025.) |
| Ref | Expression |
|---|---|
| raleqtrrdv.1 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| raleqtrrdv.2 | ⊢ (𝜑 → 𝐵 = 𝐴) |
| Ref | Expression |
|---|---|
| raleqtrrdv | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqtrrdv.1 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | |
| 2 | raleqtrrdv.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
| 3 | 2 | raleqdv 3325 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜓)) |
| 4 | 1, 3 | mpbird 257 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∀wral 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2728 df-ral 3061 df-rex 3070 |
| This theorem is referenced by: fveqressseq 7098 prmind2 16723 symgfixf1 19456 efgsp1 19756 efgsres 19757 ablfac2 20110 cncnp 23289 prdsxmslem2 24543 cnmpopc 24956 pi1coghm 25095 dvivthlem1 26048 iblulm 26451 xrlimcnp 27012 2sqlem10 27473 usgr1e 29263 cusgrexi 29461 1hevtxdg0 29524 crctcshwlkn0lem7 29837 wlkiswwlksupgr2 29898 wwlksnext 29914 clwwlkccatlem 30009 clwlkclwwlklem2a1 30012 clwlkclwwlkf1lem3 30026 wwlksext2clwwlk 30077 wwlksubclwwlk 30078 clwwlknonex2 30129 1wlkdlem4 30160 fnpreimac 32682 eulerpartlemsv3 34364 bnj1514 35078 exidreslem 37885 exidresid 37887 sticksstones11 42158 lpirlnr 43134 oaun3lem1 43392 fourierdlem73 46199 linds0 48387 |
| Copyright terms: Public domain | W3C validator |