![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > raleqtrrdv | Structured version Visualization version GIF version |
Description: Substitution of equal classes into a restricted universal quantifier. (Contributed by Matthew House, 21-Jul-2025.) |
Ref | Expression |
---|---|
raleqtrrdv.1 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
raleqtrrdv.2 | ⊢ (𝜑 → 𝐵 = 𝐴) |
Ref | Expression |
---|---|
raleqtrrdv | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqtrrdv.1 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | |
2 | raleqtrrdv.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
3 | 2 | raleqdv 3324 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜓)) |
4 | 1, 3 | mpbird 257 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∀wral 3059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-ral 3060 df-rex 3069 |
This theorem is referenced by: fveqressseq 7099 prmind2 16719 symgfixf1 19470 efgsp1 19770 efgsres 19771 ablfac2 20124 cncnp 23304 prdsxmslem2 24558 cnmpopc 24969 pi1coghm 25108 dvivthlem1 26062 iblulm 26465 xrlimcnp 27026 2sqlem10 27487 usgr1e 29277 cusgrexi 29475 1hevtxdg0 29538 crctcshwlkn0lem7 29846 wlkiswwlksupgr2 29907 wwlksnext 29923 clwwlkccatlem 30018 clwlkclwwlklem2a1 30021 clwlkclwwlkf1lem3 30035 wwlksext2clwwlk 30086 wwlksubclwwlk 30087 clwwlknonex2 30138 1wlkdlem4 30169 fnpreimac 32688 eulerpartlemsv3 34343 bnj1514 35056 exidreslem 37864 exidresid 37866 sticksstones11 42138 lpirlnr 43106 oaun3lem1 43364 fourierdlem73 46135 linds0 48311 |
Copyright terms: Public domain | W3C validator |