| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raleqtrrdv | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into a restricted universal quantifier. (Contributed by Matthew House, 21-Jul-2025.) |
| Ref | Expression |
|---|---|
| raleqtrrdv.1 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| raleqtrrdv.2 | ⊢ (𝜑 → 𝐵 = 𝐴) |
| Ref | Expression |
|---|---|
| raleqtrrdv | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqtrrdv.1 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | |
| 2 | raleqtrrdv.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
| 3 | 2 | raleqdv 3294 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜓)) |
| 4 | 1, 3 | mpbird 257 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∀wral 3049 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-ral 3050 df-rex 3059 |
| This theorem is referenced by: fveqressseq 7021 prmind2 16606 symgfixf1 19359 efgsp1 19659 efgsres 19660 ablfac2 20013 cncnp 23205 prdsxmslem2 24454 cnmpopc 24859 pi1coghm 24998 dvivthlem1 25950 iblulm 26353 xrlimcnp 26915 2sqlem10 27376 usgr1e 29234 cusgrexi 29432 1hevtxdg0 29495 crctcshwlkn0lem7 29805 wlkiswwlksupgr2 29866 wwlksnext 29882 clwwlkccatlem 29980 clwlkclwwlklem2a1 29983 clwlkclwwlkf1lem3 29997 wwlksext2clwwlk 30048 wwlksubclwwlk 30049 clwwlknonex2 30100 1wlkdlem4 30131 fnpreimac 32664 eulerpartlemsv3 34385 bnj1514 35086 exidreslem 37927 exidresid 37929 sticksstones11 42259 lpirlnr 43224 oaun3lem1 43481 fourierdlem73 46291 linds0 48580 |
| Copyright terms: Public domain | W3C validator |