![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > raleqtrrdv | Structured version Visualization version GIF version |
Description: Substitution of equal classes into a restricted universal quantifier. (Contributed by Matthew House, 21-Jul-2025.) |
Ref | Expression |
---|---|
raleqtrrdv.1 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
raleqtrrdv.2 | ⊢ (𝜑 → 𝐵 = 𝐴) |
Ref | Expression |
---|---|
raleqtrrdv | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqtrrdv.1 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | |
2 | raleqtrrdv.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
3 | 2 | raleqdv 3334 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜓)) |
4 | 1, 3 | mpbird 257 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ral 3068 df-rex 3077 |
This theorem is referenced by: fveqressseq 7113 prmind2 16732 symgfixf1 19479 efgsp1 19779 efgsres 19780 ablfac2 20133 cncnp 23309 prdsxmslem2 24563 cnmpopc 24974 pi1coghm 25113 dvivthlem1 26067 iblulm 26468 xrlimcnp 27029 2sqlem10 27490 usgr1e 29280 cusgrexi 29478 1hevtxdg0 29541 crctcshwlkn0lem7 29849 wlkiswwlksupgr2 29910 wwlksnext 29926 clwwlkccatlem 30021 clwlkclwwlklem2a1 30024 clwlkclwwlkf1lem3 30038 wwlksext2clwwlk 30089 wwlksubclwwlk 30090 clwwlknonex2 30141 1wlkdlem4 30172 fnpreimac 32689 eulerpartlemsv3 34326 bnj1514 35039 exidreslem 37837 exidresid 37839 sticksstones11 42113 lpirlnr 43074 oaun3lem1 43336 fourierdlem73 46100 linds0 48194 |
Copyright terms: Public domain | W3C validator |