| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raleqtrrdv | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into a restricted universal quantifier. (Contributed by Matthew House, 21-Jul-2025.) |
| Ref | Expression |
|---|---|
| raleqtrrdv.1 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| raleqtrrdv.2 | ⊢ (𝜑 → 𝐵 = 𝐴) |
| Ref | Expression |
|---|---|
| raleqtrrdv | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqtrrdv.1 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | |
| 2 | raleqtrrdv.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
| 3 | 2 | raleqdv 3309 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜓)) |
| 4 | 1, 3 | mpbird 257 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∀wral 3052 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 df-ral 3053 df-rex 3062 |
| This theorem is referenced by: fveqressseq 7074 prmind2 16709 symgfixf1 19423 efgsp1 19723 efgsres 19724 ablfac2 20077 cncnp 23223 prdsxmslem2 24473 cnmpopc 24878 pi1coghm 25017 dvivthlem1 25970 iblulm 26373 xrlimcnp 26935 2sqlem10 27396 usgr1e 29229 cusgrexi 29427 1hevtxdg0 29490 crctcshwlkn0lem7 29803 wlkiswwlksupgr2 29864 wwlksnext 29880 clwwlkccatlem 29975 clwlkclwwlklem2a1 29978 clwlkclwwlkf1lem3 29992 wwlksext2clwwlk 30043 wwlksubclwwlk 30044 clwwlknonex2 30095 1wlkdlem4 30126 fnpreimac 32654 eulerpartlemsv3 34398 bnj1514 35099 exidreslem 37906 exidresid 37908 sticksstones11 42174 lpirlnr 43108 oaun3lem1 43365 fourierdlem73 46175 linds0 48408 |
| Copyright terms: Public domain | W3C validator |