| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raleqtrrdv | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into a restricted universal quantifier. (Contributed by Matthew House, 21-Jul-2025.) |
| Ref | Expression |
|---|---|
| raleqtrrdv.1 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| raleqtrrdv.2 | ⊢ (𝜑 → 𝐵 = 𝐴) |
| Ref | Expression |
|---|---|
| raleqtrrdv | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqtrrdv.1 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | |
| 2 | raleqtrrdv.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
| 3 | 2 | raleqdv 3299 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜓)) |
| 4 | 1, 3 | mpbird 257 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: fveqressseq 7051 prmind2 16655 symgfixf1 19367 efgsp1 19667 efgsres 19668 ablfac2 20021 cncnp 23167 prdsxmslem2 24417 cnmpopc 24822 pi1coghm 24961 dvivthlem1 25913 iblulm 26316 xrlimcnp 26878 2sqlem10 27339 usgr1e 29172 cusgrexi 29370 1hevtxdg0 29433 crctcshwlkn0lem7 29746 wlkiswwlksupgr2 29807 wwlksnext 29823 clwwlkccatlem 29918 clwlkclwwlklem2a1 29921 clwlkclwwlkf1lem3 29935 wwlksext2clwwlk 29986 wwlksubclwwlk 29987 clwwlknonex2 30038 1wlkdlem4 30069 fnpreimac 32595 eulerpartlemsv3 34352 bnj1514 35053 exidreslem 37871 exidresid 37873 sticksstones11 42144 lpirlnr 43106 oaun3lem1 43363 fourierdlem73 46177 linds0 48451 |
| Copyright terms: Public domain | W3C validator |