| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raleqtrrdv | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into a restricted universal quantifier. (Contributed by Matthew House, 21-Jul-2025.) |
| Ref | Expression |
|---|---|
| raleqtrrdv.1 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| raleqtrrdv.2 | ⊢ (𝜑 → 𝐵 = 𝐴) |
| Ref | Expression |
|---|---|
| raleqtrrdv | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqtrrdv.1 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | |
| 2 | raleqtrrdv.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
| 3 | 2 | raleqdv 3290 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜓)) |
| 4 | 1, 3 | mpbird 257 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: fveqressseq 7017 prmind2 16614 symgfixf1 19334 efgsp1 19634 efgsres 19635 ablfac2 19988 cncnp 23183 prdsxmslem2 24433 cnmpopc 24838 pi1coghm 24977 dvivthlem1 25929 iblulm 26332 xrlimcnp 26894 2sqlem10 27355 usgr1e 29208 cusgrexi 29406 1hevtxdg0 29469 crctcshwlkn0lem7 29779 wlkiswwlksupgr2 29840 wwlksnext 29856 clwwlkccatlem 29951 clwlkclwwlklem2a1 29954 clwlkclwwlkf1lem3 29968 wwlksext2clwwlk 30019 wwlksubclwwlk 30020 clwwlknonex2 30071 1wlkdlem4 30102 fnpreimac 32628 eulerpartlemsv3 34328 bnj1514 35029 exidreslem 37856 exidresid 37858 sticksstones11 42129 lpirlnr 43090 oaun3lem1 43347 fourierdlem73 46161 linds0 48438 |
| Copyright terms: Public domain | W3C validator |