Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfc0 Structured version   Visualization version   GIF version

Theorem ballotlemfc0 34473
Description: 𝐹 takes value 0 between negative and positive values. (Contributed by Thierry Arnoux, 24-Nov-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotlemfp1.c (𝜑𝐶𝑂)
ballotlemfp1.j (𝜑𝐽 ∈ ℕ)
ballotlemfc0.3 (𝜑 → ∃𝑖 ∈ (1...𝐽)((𝐹𝐶)‘𝑖) ≤ 0)
ballotlemfc0.4 (𝜑 → 0 < ((𝐹𝐶)‘𝐽))
Assertion
Ref Expression
ballotlemfc0 (𝜑 → ∃𝑘 ∈ (1...𝐽)((𝐹𝐶)‘𝑘) = 0)
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹   𝑘,𝐹   𝐶,𝑖   𝑖,𝐽   𝜑,𝑖,𝑘   𝑘,𝐽   𝐶,𝑘   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑐)   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝐹(𝑥)   𝐽(𝑥,𝑐)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemfc0
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6906 . . . . . . 7 (𝑖 = 𝑘 → ((𝐹𝐶)‘𝑖) = ((𝐹𝐶)‘𝑘))
21breq1d 5157 . . . . . 6 (𝑖 = 𝑘 → (((𝐹𝐶)‘𝑖) ≤ 0 ↔ ((𝐹𝐶)‘𝑘) ≤ 0))
32elrab 3694 . . . . 5 (𝑘 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0} ↔ (𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0))
43anbi1i 624 . . . 4 ((𝑘 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0} ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0}𝑗𝑘) ↔ ((𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0}𝑗𝑘))
5 simprlr 780 . . . . 5 ((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0}𝑗𝑘)) → ((𝐹𝐶)‘𝑘) ≤ 0)
6 simprl 771 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0)) → 𝑘 ∈ (1...𝐽))
76adantrr 717 . . . . . . . . 9 ((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0}𝑗𝑘)) → 𝑘 ∈ (1...𝐽))
8 fzssuz 13601 . . . . . . . . . . . . . 14 (1...𝐽) ⊆ (ℤ‘1)
9 uzssz 12896 . . . . . . . . . . . . . 14 (ℤ‘1) ⊆ ℤ
108, 9sstri 4004 . . . . . . . . . . . . 13 (1...𝐽) ⊆ ℤ
11 zssre 12617 . . . . . . . . . . . . 13 ℤ ⊆ ℝ
1210, 11sstri 4004 . . . . . . . . . . . 12 (1...𝐽) ⊆ ℝ
1312sseli 3990 . . . . . . . . . . 11 (𝑘 ∈ (1...𝐽) → 𝑘 ∈ ℝ)
1413ltp1d 12195 . . . . . . . . . 10 (𝑘 ∈ (1...𝐽) → 𝑘 < (𝑘 + 1))
15 1red 11259 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝐽) → 1 ∈ ℝ)
1613, 15readdcld 11287 . . . . . . . . . . 11 (𝑘 ∈ (1...𝐽) → (𝑘 + 1) ∈ ℝ)
1713, 16ltnled 11405 . . . . . . . . . 10 (𝑘 ∈ (1...𝐽) → (𝑘 < (𝑘 + 1) ↔ ¬ (𝑘 + 1) ≤ 𝑘))
1814, 17mpbid 232 . . . . . . . . 9 (𝑘 ∈ (1...𝐽) → ¬ (𝑘 + 1) ≤ 𝑘)
197, 18syl 17 . . . . . . . 8 ((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0}𝑗𝑘)) → ¬ (𝑘 + 1) ≤ 𝑘)
20 simprr 773 . . . . . . . . 9 ((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0}𝑗𝑘)) → ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0}𝑗𝑘)
21 ballotlemfc0.4 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < ((𝐹𝐶)‘𝐽))
2221adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑘 = 𝐽) → 0 < ((𝐹𝐶)‘𝐽))
23 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 = 𝐽) → 𝑘 = 𝐽)
2423fveq2d 6910 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 = 𝐽) → ((𝐹𝐶)‘𝑘) = ((𝐹𝐶)‘𝐽))
2524breq2d 5159 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 = 𝐽) → (0 < ((𝐹𝐶)‘𝑘) ↔ 0 < ((𝐹𝐶)‘𝐽)))
26 ballotlemfp1.j . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐽 ∈ ℕ)
27 elnnuz 12919 . . . . . . . . . . . . . . . . . . . . . 22 (𝐽 ∈ ℕ ↔ 𝐽 ∈ (ℤ‘1))
2826, 27sylib 218 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐽 ∈ (ℤ‘1))
29 eluzfz2 13568 . . . . . . . . . . . . . . . . . . . . 21 (𝐽 ∈ (ℤ‘1) → 𝐽 ∈ (1...𝐽))
3028, 29syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐽 ∈ (1...𝐽))
31 eleq1 2826 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝐽 → (𝑘 ∈ (1...𝐽) ↔ 𝐽 ∈ (1...𝐽)))
3230, 31syl5ibrcom 247 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑘 = 𝐽𝑘 ∈ (1...𝐽)))
3332anc2li 555 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑘 = 𝐽 → (𝜑𝑘 ∈ (1...𝐽))))
34 1eluzge0 12931 . . . . . . . . . . . . . . . . . . . 20 1 ∈ (ℤ‘0)
35 fzss1 13599 . . . . . . . . . . . . . . . . . . . . 21 (1 ∈ (ℤ‘0) → (1...𝐽) ⊆ (0...𝐽))
3635sseld 3993 . . . . . . . . . . . . . . . . . . . 20 (1 ∈ (ℤ‘0) → (𝑘 ∈ (1...𝐽) → 𝑘 ∈ (0...𝐽)))
3734, 36ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝐽) → 𝑘 ∈ (0...𝐽))
38 0red 11261 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (0...𝐽)) → 0 ∈ ℝ)
39 ballotth.m . . . . . . . . . . . . . . . . . . . . . 22 𝑀 ∈ ℕ
40 ballotth.n . . . . . . . . . . . . . . . . . . . . . 22 𝑁 ∈ ℕ
41 ballotth.o . . . . . . . . . . . . . . . . . . . . . 22 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
42 ballotth.p . . . . . . . . . . . . . . . . . . . . . 22 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
43 ballotth.f . . . . . . . . . . . . . . . . . . . . . 22 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
44 ballotlemfp1.c . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐶𝑂)
4544adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ (0...𝐽)) → 𝐶𝑂)
46 elfzelz 13560 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ (0...𝐽) → 𝑘 ∈ ℤ)
4746adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ (0...𝐽)) → 𝑘 ∈ ℤ)
4839, 40, 41, 42, 43, 45, 47ballotlemfelz 34471 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ (0...𝐽)) → ((𝐹𝐶)‘𝑘) ∈ ℤ)
4948zred 12719 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (0...𝐽)) → ((𝐹𝐶)‘𝑘) ∈ ℝ)
5038, 49ltnled 11405 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (0...𝐽)) → (0 < ((𝐹𝐶)‘𝑘) ↔ ¬ ((𝐹𝐶)‘𝑘) ≤ 0))
5137, 50sylan2 593 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (1...𝐽)) → (0 < ((𝐹𝐶)‘𝑘) ↔ ¬ ((𝐹𝐶)‘𝑘) ≤ 0))
5233, 51syl6 35 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑘 = 𝐽 → (0 < ((𝐹𝐶)‘𝑘) ↔ ¬ ((𝐹𝐶)‘𝑘) ≤ 0)))
5352imp 406 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 = 𝐽) → (0 < ((𝐹𝐶)‘𝑘) ↔ ¬ ((𝐹𝐶)‘𝑘) ≤ 0))
5425, 53bitr3d 281 . . . . . . . . . . . . . . 15 ((𝜑𝑘 = 𝐽) → (0 < ((𝐹𝐶)‘𝐽) ↔ ¬ ((𝐹𝐶)‘𝑘) ≤ 0))
5522, 54mpbid 232 . . . . . . . . . . . . . 14 ((𝜑𝑘 = 𝐽) → ¬ ((𝐹𝐶)‘𝑘) ≤ 0)
5655ex 412 . . . . . . . . . . . . 13 (𝜑 → (𝑘 = 𝐽 → ¬ ((𝐹𝐶)‘𝑘) ≤ 0))
5756con2d 134 . . . . . . . . . . . 12 (𝜑 → (((𝐹𝐶)‘𝑘) ≤ 0 → ¬ 𝑘 = 𝐽))
58 nn1m1nn 12284 . . . . . . . . . . . . . . . . . . . . 21 (𝐽 ∈ ℕ → (𝐽 = 1 ∨ (𝐽 − 1) ∈ ℕ))
5926, 58syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐽 = 1 ∨ (𝐽 − 1) ∈ ℕ))
60 ballotlemfc0.3 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ∃𝑖 ∈ (1...𝐽)((𝐹𝐶)‘𝑖) ≤ 0)
6160adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝐽 = 1) → ∃𝑖 ∈ (1...𝐽)((𝐹𝐶)‘𝑖) ≤ 0)
62 oveq1 7437 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐽 = 1 → (𝐽...𝐽) = (1...𝐽))
6362adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝐽 = 1) → (𝐽...𝐽) = (1...𝐽))
6426nnzd 12637 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐽 ∈ ℤ)
65 fzsn 13602 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐽 ∈ ℤ → (𝐽...𝐽) = {𝐽})
6664, 65syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐽...𝐽) = {𝐽})
6766adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝐽 = 1) → (𝐽...𝐽) = {𝐽})
6863, 67eqtr3d 2776 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝐽 = 1) → (1...𝐽) = {𝐽})
6961, 68rexeqtrdv 3326 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝐽 = 1) → ∃𝑖 ∈ {𝐽} ((𝐹𝐶)‘𝑖) ≤ 0)
70 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑖 = 𝐽 → ((𝐹𝐶)‘𝑖) = ((𝐹𝐶)‘𝐽))
7170breq1d 5157 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 = 𝐽 → (((𝐹𝐶)‘𝑖) ≤ 0 ↔ ((𝐹𝐶)‘𝐽) ≤ 0))
7271rexsng 4680 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐽 ∈ ℕ → (∃𝑖 ∈ {𝐽} ((𝐹𝐶)‘𝑖) ≤ 0 ↔ ((𝐹𝐶)‘𝐽) ≤ 0))
7326, 72syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (∃𝑖 ∈ {𝐽} ((𝐹𝐶)‘𝑖) ≤ 0 ↔ ((𝐹𝐶)‘𝐽) ≤ 0))
7473adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝐽 = 1) → (∃𝑖 ∈ {𝐽} ((𝐹𝐶)‘𝑖) ≤ 0 ↔ ((𝐹𝐶)‘𝐽) ≤ 0))
7569, 74mpbid 232 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝐽 = 1) → ((𝐹𝐶)‘𝐽) ≤ 0)
7621adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝐽 = 1) → 0 < ((𝐹𝐶)‘𝐽))
77 0red 11261 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → 0 ∈ ℝ)
7839, 40, 41, 42, 43, 44, 64ballotlemfelz 34471 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((𝐹𝐶)‘𝐽) ∈ ℤ)
7978zred 12719 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ((𝐹𝐶)‘𝐽) ∈ ℝ)
8077, 79ltnled 11405 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (0 < ((𝐹𝐶)‘𝐽) ↔ ¬ ((𝐹𝐶)‘𝐽) ≤ 0))
8180adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝐽 = 1) → (0 < ((𝐹𝐶)‘𝐽) ↔ ¬ ((𝐹𝐶)‘𝐽) ≤ 0))
8276, 81mpbid 232 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝐽 = 1) → ¬ ((𝐹𝐶)‘𝐽) ≤ 0)
8375, 82pm2.65da 817 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ¬ 𝐽 = 1)
84 biortn 937 . . . . . . . . . . . . . . . . . . . . . 22 𝐽 = 1 → ((𝐽 − 1) ∈ ℕ ↔ (¬ ¬ 𝐽 = 1 ∨ (𝐽 − 1) ∈ ℕ)))
8583, 84syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝐽 − 1) ∈ ℕ ↔ (¬ ¬ 𝐽 = 1 ∨ (𝐽 − 1) ∈ ℕ)))
86 notnotb 315 . . . . . . . . . . . . . . . . . . . . . 22 (𝐽 = 1 ↔ ¬ ¬ 𝐽 = 1)
8786orbi1i 913 . . . . . . . . . . . . . . . . . . . . 21 ((𝐽 = 1 ∨ (𝐽 − 1) ∈ ℕ) ↔ (¬ ¬ 𝐽 = 1 ∨ (𝐽 − 1) ∈ ℕ))
8885, 87bitr4di 289 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐽 − 1) ∈ ℕ ↔ (𝐽 = 1 ∨ (𝐽 − 1) ∈ ℕ)))
8959, 88mpbird 257 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐽 − 1) ∈ ℕ)
90 elnnuz 12919 . . . . . . . . . . . . . . . . . . 19 ((𝐽 − 1) ∈ ℕ ↔ (𝐽 − 1) ∈ (ℤ‘1))
9189, 90sylib 218 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐽 − 1) ∈ (ℤ‘1))
92 elfzp1 13610 . . . . . . . . . . . . . . . . . 18 ((𝐽 − 1) ∈ (ℤ‘1) → (𝑘 ∈ (1...((𝐽 − 1) + 1)) ↔ (𝑘 ∈ (1...(𝐽 − 1)) ∨ 𝑘 = ((𝐽 − 1) + 1))))
9391, 92syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑘 ∈ (1...((𝐽 − 1) + 1)) ↔ (𝑘 ∈ (1...(𝐽 − 1)) ∨ 𝑘 = ((𝐽 − 1) + 1))))
9426nncnd 12279 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐽 ∈ ℂ)
95 1cnd 11253 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 1 ∈ ℂ)
9694, 95npcand 11621 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐽 − 1) + 1) = 𝐽)
9796oveq2d 7446 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1...((𝐽 − 1) + 1)) = (1...𝐽))
9897eleq2d 2824 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑘 ∈ (1...((𝐽 − 1) + 1)) ↔ 𝑘 ∈ (1...𝐽)))
9996eqeq2d 2745 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑘 = ((𝐽 − 1) + 1) ↔ 𝑘 = 𝐽))
10099orbi2d 915 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑘 ∈ (1...(𝐽 − 1)) ∨ 𝑘 = ((𝐽 − 1) + 1)) ↔ (𝑘 ∈ (1...(𝐽 − 1)) ∨ 𝑘 = 𝐽)))
10193, 98, 1003bitr3d 309 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑘 ∈ (1...𝐽) ↔ (𝑘 ∈ (1...(𝐽 − 1)) ∨ 𝑘 = 𝐽)))
102 orcom 870 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ (1...(𝐽 − 1)) ∨ 𝑘 = 𝐽) ↔ (𝑘 = 𝐽𝑘 ∈ (1...(𝐽 − 1))))
103101, 102bitrdi 287 . . . . . . . . . . . . . . 15 (𝜑 → (𝑘 ∈ (1...𝐽) ↔ (𝑘 = 𝐽𝑘 ∈ (1...(𝐽 − 1)))))
104103biimpd 229 . . . . . . . . . . . . . 14 (𝜑 → (𝑘 ∈ (1...𝐽) → (𝑘 = 𝐽𝑘 ∈ (1...(𝐽 − 1)))))
105 pm5.6 1003 . . . . . . . . . . . . . 14 (((𝑘 ∈ (1...𝐽) ∧ ¬ 𝑘 = 𝐽) → 𝑘 ∈ (1...(𝐽 − 1))) ↔ (𝑘 ∈ (1...𝐽) → (𝑘 = 𝐽𝑘 ∈ (1...(𝐽 − 1)))))
106104, 105sylibr 234 . . . . . . . . . . . . 13 (𝜑 → ((𝑘 ∈ (1...𝐽) ∧ ¬ 𝑘 = 𝐽) → 𝑘 ∈ (1...(𝐽 − 1))))
10789nnzd 12637 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐽 − 1) ∈ ℤ)
108 1z 12644 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℤ
109107, 108jctil 519 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1 ∈ ℤ ∧ (𝐽 − 1) ∈ ℤ))
110 elfzelz 13560 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...(𝐽 − 1)) → 𝑘 ∈ ℤ)
111110, 108jctir 520 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...(𝐽 − 1)) → (𝑘 ∈ ℤ ∧ 1 ∈ ℤ))
112 fzaddel 13594 . . . . . . . . . . . . . . . . . 18 (((1 ∈ ℤ ∧ (𝐽 − 1) ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑘 ∈ (1...(𝐽 − 1)) ↔ (𝑘 + 1) ∈ ((1 + 1)...((𝐽 − 1) + 1))))
113109, 111, 112syl2an 596 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...(𝐽 − 1))) → (𝑘 ∈ (1...(𝐽 − 1)) ↔ (𝑘 + 1) ∈ ((1 + 1)...((𝐽 − 1) + 1))))
114113biimp3a 1468 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...(𝐽 − 1)) ∧ 𝑘 ∈ (1...(𝐽 − 1))) → (𝑘 + 1) ∈ ((1 + 1)...((𝐽 − 1) + 1)))
1151143anidm23 1420 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...(𝐽 − 1))) → (𝑘 + 1) ∈ ((1 + 1)...((𝐽 − 1) + 1)))
116 1p1e2 12388 . . . . . . . . . . . . . . . . . . . 20 (1 + 1) = 2
117116a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (1 + 1) = 2)
118117, 96oveq12d 7448 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((1 + 1)...((𝐽 − 1) + 1)) = (2...𝐽))
119118eleq2d 2824 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑘 + 1) ∈ ((1 + 1)...((𝐽 − 1) + 1)) ↔ (𝑘 + 1) ∈ (2...𝐽)))
120 2eluzge1 12933 . . . . . . . . . . . . . . . . . . 19 2 ∈ (ℤ‘1)
121 fzss1 13599 . . . . . . . . . . . . . . . . . . 19 (2 ∈ (ℤ‘1) → (2...𝐽) ⊆ (1...𝐽))
122120, 121ax-mp 5 . . . . . . . . . . . . . . . . . 18 (2...𝐽) ⊆ (1...𝐽)
123122sseli 3990 . . . . . . . . . . . . . . . . 17 ((𝑘 + 1) ∈ (2...𝐽) → (𝑘 + 1) ∈ (1...𝐽))
124119, 123biimtrdi 253 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑘 + 1) ∈ ((1 + 1)...((𝐽 − 1) + 1)) → (𝑘 + 1) ∈ (1...𝐽)))
125124adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...(𝐽 − 1))) → ((𝑘 + 1) ∈ ((1 + 1)...((𝐽 − 1) + 1)) → (𝑘 + 1) ∈ (1...𝐽)))
126115, 125mpd 15 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...(𝐽 − 1))) → (𝑘 + 1) ∈ (1...𝐽))
127126ex 412 . . . . . . . . . . . . 13 (𝜑 → (𝑘 ∈ (1...(𝐽 − 1)) → (𝑘 + 1) ∈ (1...𝐽)))
128106, 127syld 47 . . . . . . . . . . . 12 (𝜑 → ((𝑘 ∈ (1...𝐽) ∧ ¬ 𝑘 = 𝐽) → (𝑘 + 1) ∈ (1...𝐽)))
12957, 128sylan2d 605 . . . . . . . . . . 11 (𝜑 → ((𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0) → (𝑘 + 1) ∈ (1...𝐽)))
130129imp 406 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0)) → (𝑘 + 1) ∈ (1...𝐽))
131130adantrr 717 . . . . . . . . 9 ((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0}𝑗𝑘)) → (𝑘 + 1) ∈ (1...𝐽))
132 fveq2 6906 . . . . . . . . . . . . . 14 (𝑖 = (𝑘 + 1) → ((𝐹𝐶)‘𝑖) = ((𝐹𝐶)‘(𝑘 + 1)))
133132breq1d 5157 . . . . . . . . . . . . 13 (𝑖 = (𝑘 + 1) → (((𝐹𝐶)‘𝑖) ≤ 0 ↔ ((𝐹𝐶)‘(𝑘 + 1)) ≤ 0))
134133elrab 3694 . . . . . . . . . . . 12 ((𝑘 + 1) ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0} ↔ ((𝑘 + 1) ∈ (1...𝐽) ∧ ((𝐹𝐶)‘(𝑘 + 1)) ≤ 0))
135 breq1 5150 . . . . . . . . . . . . 13 (𝑗 = (𝑘 + 1) → (𝑗𝑘 ↔ (𝑘 + 1) ≤ 𝑘))
136135rspccva 3620 . . . . . . . . . . . 12 ((∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0}𝑗𝑘 ∧ (𝑘 + 1) ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0}) → (𝑘 + 1) ≤ 𝑘)
137134, 136sylan2br 595 . . . . . . . . . . 11 ((∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0}𝑗𝑘 ∧ ((𝑘 + 1) ∈ (1...𝐽) ∧ ((𝐹𝐶)‘(𝑘 + 1)) ≤ 0)) → (𝑘 + 1) ≤ 𝑘)
138137expr 456 . . . . . . . . . 10 ((∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0}𝑗𝑘 ∧ (𝑘 + 1) ∈ (1...𝐽)) → (((𝐹𝐶)‘(𝑘 + 1)) ≤ 0 → (𝑘 + 1) ≤ 𝑘))
139138con3d 152 . . . . . . . . 9 ((∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0}𝑗𝑘 ∧ (𝑘 + 1) ∈ (1...𝐽)) → (¬ (𝑘 + 1) ≤ 𝑘 → ¬ ((𝐹𝐶)‘(𝑘 + 1)) ≤ 0))
14020, 131, 139syl2anc 584 . . . . . . . 8 ((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0}𝑗𝑘)) → (¬ (𝑘 + 1) ≤ 𝑘 → ¬ ((𝐹𝐶)‘(𝑘 + 1)) ≤ 0))
14119, 140mpd 15 . . . . . . 7 ((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0}𝑗𝑘)) → ¬ ((𝐹𝐶)‘(𝑘 + 1)) ≤ 0)
142 simplrr 778 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0}𝑗𝑘)) ∧ ¬ (𝑘 + 1) ∈ 𝐶) → ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0}𝑗𝑘)
143131adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0}𝑗𝑘)) ∧ ¬ (𝑘 + 1) ∈ 𝐶) → (𝑘 + 1) ∈ (1...𝐽))
144 simpll 767 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0)) ∧ ¬ (𝑘 + 1) ∈ 𝐶) → 𝜑)
145130adantr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0)) ∧ ¬ (𝑘 + 1) ∈ 𝐶) → (𝑘 + 1) ∈ (1...𝐽))
14635sseld 3993 . . . . . . . . . . . . . . 15 (1 ∈ (ℤ‘0) → ((𝑘 + 1) ∈ (1...𝐽) → (𝑘 + 1) ∈ (0...𝐽)))
14734, 145, 146mpsyl 68 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0)) ∧ ¬ (𝑘 + 1) ∈ 𝐶) → (𝑘 + 1) ∈ (0...𝐽))
14844adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 + 1) ∈ (0...𝐽)) → 𝐶𝑂)
149 elfzelz 13560 . . . . . . . . . . . . . . . . 17 ((𝑘 + 1) ∈ (0...𝐽) → (𝑘 + 1) ∈ ℤ)
150149adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 + 1) ∈ (0...𝐽)) → (𝑘 + 1) ∈ ℤ)
15139, 40, 41, 42, 43, 148, 150ballotlemfelz 34471 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 + 1) ∈ (0...𝐽)) → ((𝐹𝐶)‘(𝑘 + 1)) ∈ ℤ)
152151zred 12719 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 + 1) ∈ (0...𝐽)) → ((𝐹𝐶)‘(𝑘 + 1)) ∈ ℝ)
153144, 147, 152syl2anc 584 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0)) ∧ ¬ (𝑘 + 1) ∈ 𝐶) → ((𝐹𝐶)‘(𝑘 + 1)) ∈ ℝ)
154 0red 11261 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0)) ∧ ¬ (𝑘 + 1) ∈ 𝐶) → 0 ∈ ℝ)
155 simplrr 778 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0)) ∧ ¬ (𝑘 + 1) ∈ 𝐶) → ((𝐹𝐶)‘𝑘) ≤ 0)
1566adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0)) ∧ ¬ (𝑘 + 1) ∈ 𝐶) → 𝑘 ∈ (1...𝐽))
157156, 37syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0)) ∧ ¬ (𝑘 + 1) ∈ 𝐶) → 𝑘 ∈ (0...𝐽))
158129imdistani 568 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0)) → (𝜑 ∧ (𝑘 + 1) ∈ (1...𝐽)))
15944adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 + 1) ∈ (1...𝐽)) → 𝐶𝑂)
160 elfznn 13589 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 + 1) ∈ (1...𝐽) → (𝑘 + 1) ∈ ℕ)
161160adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 + 1) ∈ (1...𝐽)) → (𝑘 + 1) ∈ ℕ)
16239, 40, 41, 42, 43, 159, 161ballotlemfp1 34472 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 + 1) ∈ (1...𝐽)) → ((¬ (𝑘 + 1) ∈ 𝐶 → ((𝐹𝐶)‘(𝑘 + 1)) = (((𝐹𝐶)‘((𝑘 + 1) − 1)) − 1)) ∧ ((𝑘 + 1) ∈ 𝐶 → ((𝐹𝐶)‘(𝑘 + 1)) = (((𝐹𝐶)‘((𝑘 + 1) − 1)) + 1))))
163162simpld 494 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 + 1) ∈ (1...𝐽)) → (¬ (𝑘 + 1) ∈ 𝐶 → ((𝐹𝐶)‘(𝑘 + 1)) = (((𝐹𝐶)‘((𝑘 + 1) − 1)) − 1)))
164163imp 406 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑘 + 1) ∈ (1...𝐽)) ∧ ¬ (𝑘 + 1) ∈ 𝐶) → ((𝐹𝐶)‘(𝑘 + 1)) = (((𝐹𝐶)‘((𝑘 + 1) − 1)) − 1))
165158, 164sylan 580 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0)) ∧ ¬ (𝑘 + 1) ∈ 𝐶) → ((𝐹𝐶)‘(𝑘 + 1)) = (((𝐹𝐶)‘((𝑘 + 1) − 1)) − 1))
166 elfzelz 13560 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝐽) → 𝑘 ∈ ℤ)
167166zcnd 12720 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...𝐽) → 𝑘 ∈ ℂ)
168 1cnd 11253 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...𝐽) → 1 ∈ ℂ)
169167, 168pncand 11618 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝐽) → ((𝑘 + 1) − 1) = 𝑘)
170169fveq2d 6910 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝐽) → ((𝐹𝐶)‘((𝑘 + 1) − 1)) = ((𝐹𝐶)‘𝑘))
171170oveq1d 7445 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...𝐽) → (((𝐹𝐶)‘((𝑘 + 1) − 1)) − 1) = (((𝐹𝐶)‘𝑘) − 1))
172171eqeq2d 2745 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...𝐽) → (((𝐹𝐶)‘(𝑘 + 1)) = (((𝐹𝐶)‘((𝑘 + 1) − 1)) − 1) ↔ ((𝐹𝐶)‘(𝑘 + 1)) = (((𝐹𝐶)‘𝑘) − 1)))
173156, 172syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0)) ∧ ¬ (𝑘 + 1) ∈ 𝐶) → (((𝐹𝐶)‘(𝑘 + 1)) = (((𝐹𝐶)‘((𝑘 + 1) − 1)) − 1) ↔ ((𝐹𝐶)‘(𝑘 + 1)) = (((𝐹𝐶)‘𝑘) − 1)))
174165, 173mpbid 232 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0)) ∧ ¬ (𝑘 + 1) ∈ 𝐶) → ((𝐹𝐶)‘(𝑘 + 1)) = (((𝐹𝐶)‘𝑘) − 1))
175 0z 12621 . . . . . . . . . . . . . . . . . 18 0 ∈ ℤ
176 zlem1lt 12666 . . . . . . . . . . . . . . . . . 18 ((((𝐹𝐶)‘𝑘) ∈ ℤ ∧ 0 ∈ ℤ) → (((𝐹𝐶)‘𝑘) ≤ 0 ↔ (((𝐹𝐶)‘𝑘) − 1) < 0))
17748, 175, 176sylancl 586 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (0...𝐽)) → (((𝐹𝐶)‘𝑘) ≤ 0 ↔ (((𝐹𝐶)‘𝑘) − 1) < 0))
178177adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (0...𝐽)) ∧ ((𝐹𝐶)‘(𝑘 + 1)) = (((𝐹𝐶)‘𝑘) − 1)) → (((𝐹𝐶)‘𝑘) ≤ 0 ↔ (((𝐹𝐶)‘𝑘) − 1) < 0))
179 breq1 5150 . . . . . . . . . . . . . . . . 17 (((𝐹𝐶)‘(𝑘 + 1)) = (((𝐹𝐶)‘𝑘) − 1) → (((𝐹𝐶)‘(𝑘 + 1)) < 0 ↔ (((𝐹𝐶)‘𝑘) − 1) < 0))
180179adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (0...𝐽)) ∧ ((𝐹𝐶)‘(𝑘 + 1)) = (((𝐹𝐶)‘𝑘) − 1)) → (((𝐹𝐶)‘(𝑘 + 1)) < 0 ↔ (((𝐹𝐶)‘𝑘) − 1) < 0))
181178, 180bitr4d 282 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (0...𝐽)) ∧ ((𝐹𝐶)‘(𝑘 + 1)) = (((𝐹𝐶)‘𝑘) − 1)) → (((𝐹𝐶)‘𝑘) ≤ 0 ↔ ((𝐹𝐶)‘(𝑘 + 1)) < 0))
182144, 157, 174, 181syl21anc 838 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0)) ∧ ¬ (𝑘 + 1) ∈ 𝐶) → (((𝐹𝐶)‘𝑘) ≤ 0 ↔ ((𝐹𝐶)‘(𝑘 + 1)) < 0))
183155, 182mpbid 232 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0)) ∧ ¬ (𝑘 + 1) ∈ 𝐶) → ((𝐹𝐶)‘(𝑘 + 1)) < 0)
184153, 154, 183ltled 11406 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0)) ∧ ¬ (𝑘 + 1) ∈ 𝐶) → ((𝐹𝐶)‘(𝑘 + 1)) ≤ 0)
185184adantlrr 721 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0}𝑗𝑘)) ∧ ¬ (𝑘 + 1) ∈ 𝐶) → ((𝐹𝐶)‘(𝑘 + 1)) ≤ 0)
186142, 143, 185, 137syl12anc 837 . . . . . . . . . 10 (((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0}𝑗𝑘)) ∧ ¬ (𝑘 + 1) ∈ 𝐶) → (𝑘 + 1) ≤ 𝑘)
18719adantr 480 . . . . . . . . . 10 (((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0}𝑗𝑘)) ∧ ¬ (𝑘 + 1) ∈ 𝐶) → ¬ (𝑘 + 1) ≤ 𝑘)
188186, 187condan 818 . . . . . . . . 9 ((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0}𝑗𝑘)) → (𝑘 + 1) ∈ 𝐶)
189162simprd 495 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 + 1) ∈ (1...𝐽)) → ((𝑘 + 1) ∈ 𝐶 → ((𝐹𝐶)‘(𝑘 + 1)) = (((𝐹𝐶)‘((𝑘 + 1) − 1)) + 1)))
190189imp 406 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 + 1) ∈ (1...𝐽)) ∧ (𝑘 + 1) ∈ 𝐶) → ((𝐹𝐶)‘(𝑘 + 1)) = (((𝐹𝐶)‘((𝑘 + 1) − 1)) + 1))
191158, 190sylan 580 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0)) ∧ (𝑘 + 1) ∈ 𝐶) → ((𝐹𝐶)‘(𝑘 + 1)) = (((𝐹𝐶)‘((𝑘 + 1) − 1)) + 1))
1926adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0)) ∧ (𝑘 + 1) ∈ 𝐶) → 𝑘 ∈ (1...𝐽))
193170oveq1d 7445 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝐽) → (((𝐹𝐶)‘((𝑘 + 1) − 1)) + 1) = (((𝐹𝐶)‘𝑘) + 1))
194193eqeq2d 2745 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝐽) → (((𝐹𝐶)‘(𝑘 + 1)) = (((𝐹𝐶)‘((𝑘 + 1) − 1)) + 1) ↔ ((𝐹𝐶)‘(𝑘 + 1)) = (((𝐹𝐶)‘𝑘) + 1)))
195192, 194syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0)) ∧ (𝑘 + 1) ∈ 𝐶) → (((𝐹𝐶)‘(𝑘 + 1)) = (((𝐹𝐶)‘((𝑘 + 1) − 1)) + 1) ↔ ((𝐹𝐶)‘(𝑘 + 1)) = (((𝐹𝐶)‘𝑘) + 1)))
196191, 195mpbid 232 . . . . . . . . . 10 (((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0)) ∧ (𝑘 + 1) ∈ 𝐶) → ((𝐹𝐶)‘(𝑘 + 1)) = (((𝐹𝐶)‘𝑘) + 1))
197196adantlrr 721 . . . . . . . . 9 (((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0}𝑗𝑘)) ∧ (𝑘 + 1) ∈ 𝐶) → ((𝐹𝐶)‘(𝑘 + 1)) = (((𝐹𝐶)‘𝑘) + 1))
198188, 197mpdan 687 . . . . . . . 8 ((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0}𝑗𝑘)) → ((𝐹𝐶)‘(𝑘 + 1)) = (((𝐹𝐶)‘𝑘) + 1))
199 breq1 5150 . . . . . . . . 9 (((𝐹𝐶)‘(𝑘 + 1)) = (((𝐹𝐶)‘𝑘) + 1) → (((𝐹𝐶)‘(𝑘 + 1)) ≤ 0 ↔ (((𝐹𝐶)‘𝑘) + 1) ≤ 0))
200199notbid 318 . . . . . . . 8 (((𝐹𝐶)‘(𝑘 + 1)) = (((𝐹𝐶)‘𝑘) + 1) → (¬ ((𝐹𝐶)‘(𝑘 + 1)) ≤ 0 ↔ ¬ (((𝐹𝐶)‘𝑘) + 1) ≤ 0))
201198, 200syl 17 . . . . . . 7 ((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0}𝑗𝑘)) → (¬ ((𝐹𝐶)‘(𝑘 + 1)) ≤ 0 ↔ ¬ (((𝐹𝐶)‘𝑘) + 1) ≤ 0))
202141, 201mpbid 232 . . . . . 6 ((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0}𝑗𝑘)) → ¬ (((𝐹𝐶)‘𝑘) + 1) ≤ 0)
2036, 37syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0)) → 𝑘 ∈ (0...𝐽))
204203, 48syldan 591 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0)) → ((𝐹𝐶)‘𝑘) ∈ ℤ)
205204adantrr 717 . . . . . . 7 ((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0}𝑗𝑘)) → ((𝐹𝐶)‘𝑘) ∈ ℤ)
206 zleltp1 12665 . . . . . . . . 9 ((0 ∈ ℤ ∧ ((𝐹𝐶)‘𝑘) ∈ ℤ) → (0 ≤ ((𝐹𝐶)‘𝑘) ↔ 0 < (((𝐹𝐶)‘𝑘) + 1)))
207175, 206mpan 690 . . . . . . . 8 (((𝐹𝐶)‘𝑘) ∈ ℤ → (0 ≤ ((𝐹𝐶)‘𝑘) ↔ 0 < (((𝐹𝐶)‘𝑘) + 1)))
208 0red 11261 . . . . . . . . 9 (((𝐹𝐶)‘𝑘) ∈ ℤ → 0 ∈ ℝ)
209 zre 12614 . . . . . . . . . 10 (((𝐹𝐶)‘𝑘) ∈ ℤ → ((𝐹𝐶)‘𝑘) ∈ ℝ)
210 1red 11259 . . . . . . . . . 10 (((𝐹𝐶)‘𝑘) ∈ ℤ → 1 ∈ ℝ)
211209, 210readdcld 11287 . . . . . . . . 9 (((𝐹𝐶)‘𝑘) ∈ ℤ → (((𝐹𝐶)‘𝑘) + 1) ∈ ℝ)
212208, 211ltnled 11405 . . . . . . . 8 (((𝐹𝐶)‘𝑘) ∈ ℤ → (0 < (((𝐹𝐶)‘𝑘) + 1) ↔ ¬ (((𝐹𝐶)‘𝑘) + 1) ≤ 0))
213207, 212bitrd 279 . . . . . . 7 (((𝐹𝐶)‘𝑘) ∈ ℤ → (0 ≤ ((𝐹𝐶)‘𝑘) ↔ ¬ (((𝐹𝐶)‘𝑘) + 1) ≤ 0))
214205, 213syl 17 . . . . . 6 ((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0}𝑗𝑘)) → (0 ≤ ((𝐹𝐶)‘𝑘) ↔ ¬ (((𝐹𝐶)‘𝑘) + 1) ≤ 0))
215202, 214mpbird 257 . . . . 5 ((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0}𝑗𝑘)) → 0 ≤ ((𝐹𝐶)‘𝑘))
216205zred 12719 . . . . . 6 ((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0}𝑗𝑘)) → ((𝐹𝐶)‘𝑘) ∈ ℝ)
217 0red 11261 . . . . . 6 ((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0}𝑗𝑘)) → 0 ∈ ℝ)
218216, 217letri3d 11400 . . . . 5 ((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0}𝑗𝑘)) → (((𝐹𝐶)‘𝑘) = 0 ↔ (((𝐹𝐶)‘𝑘) ≤ 0 ∧ 0 ≤ ((𝐹𝐶)‘𝑘))))
2195, 215, 218mpbir2and 713 . . . 4 ((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) ≤ 0) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0}𝑗𝑘)) → ((𝐹𝐶)‘𝑘) = 0)
2204, 219sylan2b 594 . . 3 ((𝜑 ∧ (𝑘 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0} ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0}𝑗𝑘)) → ((𝐹𝐶)‘𝑘) = 0)
221 ssrab2 4089 . . . . . 6 {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0} ⊆ (1...𝐽)
222221, 12sstri 4004 . . . . 5 {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0} ⊆ ℝ
223222a1i 11 . . . 4 (𝜑 → {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0} ⊆ ℝ)
224 fzfi 14009 . . . . . 6 (1...𝐽) ∈ Fin
225 ssfi 9211 . . . . . 6 (((1...𝐽) ∈ Fin ∧ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0} ⊆ (1...𝐽)) → {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0} ∈ Fin)
226224, 221, 225mp2an 692 . . . . 5 {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0} ∈ Fin
227226a1i 11 . . . 4 (𝜑 → {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0} ∈ Fin)
228 rabn0 4394 . . . . 5 ({𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0} ≠ ∅ ↔ ∃𝑖 ∈ (1...𝐽)((𝐹𝐶)‘𝑖) ≤ 0)
22960, 228sylibr 234 . . . 4 (𝜑 → {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0} ≠ ∅)
230 fimaxre 12209 . . . 4 (({𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0} ⊆ ℝ ∧ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0} ∈ Fin ∧ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0} ≠ ∅) → ∃𝑘 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0}∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0}𝑗𝑘)
231223, 227, 229, 230syl3anc 1370 . . 3 (𝜑 → ∃𝑘 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0}∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0}𝑗𝑘)
232220, 231reximddv 3168 . 2 (𝜑 → ∃𝑘 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0} ((𝐹𝐶)‘𝑘) = 0)
233 elrabi 3689 . . . 4 (𝑘 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0} → 𝑘 ∈ (1...𝐽))
234233anim1i 615 . . 3 ((𝑘 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0} ∧ ((𝐹𝐶)‘𝑘) = 0) → (𝑘 ∈ (1...𝐽) ∧ ((𝐹𝐶)‘𝑘) = 0))
235234reximi2 3076 . 2 (∃𝑘 ∈ {𝑖 ∈ (1...𝐽) ∣ ((𝐹𝐶)‘𝑖) ≤ 0} ((𝐹𝐶)‘𝑘) = 0 → ∃𝑘 ∈ (1...𝐽)((𝐹𝐶)‘𝑘) = 0)
236232, 235syl 17 1 (𝜑 → ∃𝑘 ∈ (1...𝐽)((𝐹𝐶)‘𝑘) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1536  wcel 2105  wne 2937  wral 3058  wrex 3067  {crab 3432  cdif 3959  cin 3961  wss 3962  c0 4338  𝒫 cpw 4604  {csn 4630   class class class wbr 5147  cmpt 5230  cfv 6562  (class class class)co 7430  Fincfn 8983  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   < clt 11292  cle 11293  cmin 11489   / cdiv 11917  cn 12263  2c2 12318  cz 12610  cuz 12875  ...cfz 13543  chash 14365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-oadd 8508  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544  df-hash 14366
This theorem is referenced by:  ballotlem5  34480  ballotlemic  34487
  Copyright terms: Public domain W3C validator