Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrlspeqN Structured version   Visualization version   GIF version

Theorem lkrlspeqN 37112
Description: Condition for colinear functionals to have equal kernels. (Contributed by NM, 20-Mar-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
lkrlspeq.f 𝐹 = (LFnl‘𝑊)
lkrlspeq.l 𝐿 = (LKer‘𝑊)
lkrlspeq.d 𝐷 = (LDual‘𝑊)
lkrlspeq.o 0 = (0g𝐷)
lkrlspeq.j 𝑁 = (LSpan‘𝐷)
lkrlspeq.w (𝜑𝑊 ∈ LVec)
lkrlspeq.h (𝜑𝐻𝐹)
lkrlspeq.g (𝜑𝐺 ∈ ((𝑁‘{𝐻}) ∖ { 0 }))
Assertion
Ref Expression
lkrlspeqN (𝜑 → (𝐿𝐺) = (𝐿𝐻))

Proof of Theorem lkrlspeqN
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 lkrlspeq.g . . . . 5 (𝜑𝐺 ∈ ((𝑁‘{𝐻}) ∖ { 0 }))
21eldifad 3895 . . . 4 (𝜑𝐺 ∈ (𝑁‘{𝐻}))
3 lkrlspeq.d . . . . . 6 𝐷 = (LDual‘𝑊)
4 lkrlspeq.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
5 lveclmod 20283 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
64, 5syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
73, 6lduallmod 37094 . . . . 5 (𝜑𝐷 ∈ LMod)
8 lkrlspeq.f . . . . . 6 𝐹 = (LFnl‘𝑊)
9 eqid 2738 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
10 lkrlspeq.h . . . . . 6 (𝜑𝐻𝐹)
118, 3, 9, 4, 10ldualelvbase 37068 . . . . 5 (𝜑𝐻 ∈ (Base‘𝐷))
12 eqid 2738 . . . . . 6 (Scalar‘𝐷) = (Scalar‘𝐷)
13 eqid 2738 . . . . . 6 (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝐷))
14 eqid 2738 . . . . . 6 ( ·𝑠𝐷) = ( ·𝑠𝐷)
15 lkrlspeq.j . . . . . 6 𝑁 = (LSpan‘𝐷)
1612, 13, 9, 14, 15lspsnel 20180 . . . . 5 ((𝐷 ∈ LMod ∧ 𝐻 ∈ (Base‘𝐷)) → (𝐺 ∈ (𝑁‘{𝐻}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝐺 = (𝑘( ·𝑠𝐷)𝐻)))
177, 11, 16syl2anc 583 . . . 4 (𝜑 → (𝐺 ∈ (𝑁‘{𝐻}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝐺 = (𝑘( ·𝑠𝐷)𝐻)))
182, 17mpbid 231 . . 3 (𝜑 → ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝐺 = (𝑘( ·𝑠𝐷)𝐻))
19 eqid 2738 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
20 eqid 2738 . . . . 5 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
2119, 20, 3, 12, 13, 4ldualsbase 37074 . . . 4 (𝜑 → (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝑊)))
2221rexeqdv 3340 . . 3 (𝜑 → (∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝐺 = (𝑘( ·𝑠𝐷)𝐻) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝐺 = (𝑘( ·𝑠𝐷)𝐻)))
2318, 22mpbid 231 . 2 (𝜑 → ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝐺 = (𝑘( ·𝑠𝐷)𝐻))
24 eqid 2738 . . . 4 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
25 lkrlspeq.l . . . 4 𝐿 = (LKer‘𝑊)
2643ad2ant1 1131 . . . 4 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝑊 ∈ LVec)
27 simp2 1135 . . . . 5 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
28 simp3 1136 . . . . . . 7 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝐺 = (𝑘( ·𝑠𝐷)𝐻))
29 eldifsni 4720 . . . . . . . . 9 (𝐺 ∈ ((𝑁‘{𝐻}) ∖ { 0 }) → 𝐺0 )
301, 29syl 17 . . . . . . . 8 (𝜑𝐺0 )
31303ad2ant1 1131 . . . . . . 7 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝐺0 )
3228, 31eqnetrrd 3011 . . . . . 6 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → (𝑘( ·𝑠𝐷)𝐻) ≠ 0 )
33 eqid 2738 . . . . . . . . . . . 12 (0g‘(Scalar‘𝐷)) = (0g‘(Scalar‘𝐷))
3419, 24, 3, 12, 33, 6ldual0 37088 . . . . . . . . . . 11 (𝜑 → (0g‘(Scalar‘𝐷)) = (0g‘(Scalar‘𝑊)))
35343ad2ant1 1131 . . . . . . . . . 10 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → (0g‘(Scalar‘𝐷)) = (0g‘(Scalar‘𝑊)))
3635eqeq2d 2749 . . . . . . . . 9 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → (𝑘 = (0g‘(Scalar‘𝐷)) ↔ 𝑘 = (0g‘(Scalar‘𝑊))))
37 orc 863 . . . . . . . . 9 (𝑘 = (0g‘(Scalar‘𝐷)) → (𝑘 = (0g‘(Scalar‘𝐷)) ∨ 𝐻 = 0 ))
3836, 37syl6bir 253 . . . . . . . 8 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → (𝑘 = (0g‘(Scalar‘𝑊)) → (𝑘 = (0g‘(Scalar‘𝐷)) ∨ 𝐻 = 0 )))
39 lkrlspeq.o . . . . . . . . 9 0 = (0g𝐷)
403, 4lduallvec 37095 . . . . . . . . . 10 (𝜑𝐷 ∈ LVec)
41403ad2ant1 1131 . . . . . . . . 9 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝐷 ∈ LVec)
42213ad2ant1 1131 . . . . . . . . . 10 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝑊)))
4327, 42eleqtrrd 2842 . . . . . . . . 9 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝑘 ∈ (Base‘(Scalar‘𝐷)))
44113ad2ant1 1131 . . . . . . . . 9 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝐻 ∈ (Base‘𝐷))
459, 14, 12, 13, 33, 39, 41, 43, 44lvecvs0or 20285 . . . . . . . 8 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → ((𝑘( ·𝑠𝐷)𝐻) = 0 ↔ (𝑘 = (0g‘(Scalar‘𝐷)) ∨ 𝐻 = 0 )))
4638, 45sylibrd 258 . . . . . . 7 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → (𝑘 = (0g‘(Scalar‘𝑊)) → (𝑘( ·𝑠𝐷)𝐻) = 0 ))
4746necon3d 2963 . . . . . 6 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → ((𝑘( ·𝑠𝐷)𝐻) ≠ 0𝑘 ≠ (0g‘(Scalar‘𝑊))))
4832, 47mpd 15 . . . . 5 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝑘 ≠ (0g‘(Scalar‘𝑊)))
49 eldifsn 4717 . . . . 5 (𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ↔ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊))))
5027, 48, 49sylanbrc 582 . . . 4 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))
51103ad2ant1 1131 . . . 4 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝐻𝐹)
5219, 20, 24, 8, 25, 3, 14, 26, 50, 51, 28lkreqN 37111 . . 3 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → (𝐿𝐺) = (𝐿𝐻))
5352rexlimdv3a 3214 . 2 (𝜑 → (∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝐺 = (𝑘( ·𝑠𝐷)𝐻) → (𝐿𝐺) = (𝐿𝐻)))
5423, 53mpd 15 1 (𝜑 → (𝐿𝐺) = (𝐿𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064  cdif 3880  {csn 4558  cfv 6418  (class class class)co 7255  Basecbs 16840  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067  LModclmod 20038  LSpanclspn 20148  LVecclvec 20279  LFnlclfn 36998  LKerclk 37026  LDualcld 37064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-cntz 18838  df-lsm 19156  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-drng 19908  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lvec 20280  df-lshyp 36918  df-lfl 36999  df-lkr 37027  df-ldual 37065
This theorem is referenced by:  lcdlkreqN  39563
  Copyright terms: Public domain W3C validator