Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrlspeqN Structured version   Visualization version   GIF version

Theorem lkrlspeqN 36467
Description: Condition for colinear functionals to have equal kernels. (Contributed by NM, 20-Mar-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
lkrlspeq.f 𝐹 = (LFnl‘𝑊)
lkrlspeq.l 𝐿 = (LKer‘𝑊)
lkrlspeq.d 𝐷 = (LDual‘𝑊)
lkrlspeq.o 0 = (0g𝐷)
lkrlspeq.j 𝑁 = (LSpan‘𝐷)
lkrlspeq.w (𝜑𝑊 ∈ LVec)
lkrlspeq.h (𝜑𝐻𝐹)
lkrlspeq.g (𝜑𝐺 ∈ ((𝑁‘{𝐻}) ∖ { 0 }))
Assertion
Ref Expression
lkrlspeqN (𝜑 → (𝐿𝐺) = (𝐿𝐻))

Proof of Theorem lkrlspeqN
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 lkrlspeq.g . . . . 5 (𝜑𝐺 ∈ ((𝑁‘{𝐻}) ∖ { 0 }))
21eldifad 3893 . . . 4 (𝜑𝐺 ∈ (𝑁‘{𝐻}))
3 lkrlspeq.d . . . . . 6 𝐷 = (LDual‘𝑊)
4 lkrlspeq.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
5 lveclmod 19871 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
64, 5syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
73, 6lduallmod 36449 . . . . 5 (𝜑𝐷 ∈ LMod)
8 lkrlspeq.f . . . . . 6 𝐹 = (LFnl‘𝑊)
9 eqid 2798 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
10 lkrlspeq.h . . . . . 6 (𝜑𝐻𝐹)
118, 3, 9, 4, 10ldualelvbase 36423 . . . . 5 (𝜑𝐻 ∈ (Base‘𝐷))
12 eqid 2798 . . . . . 6 (Scalar‘𝐷) = (Scalar‘𝐷)
13 eqid 2798 . . . . . 6 (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝐷))
14 eqid 2798 . . . . . 6 ( ·𝑠𝐷) = ( ·𝑠𝐷)
15 lkrlspeq.j . . . . . 6 𝑁 = (LSpan‘𝐷)
1612, 13, 9, 14, 15lspsnel 19768 . . . . 5 ((𝐷 ∈ LMod ∧ 𝐻 ∈ (Base‘𝐷)) → (𝐺 ∈ (𝑁‘{𝐻}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝐺 = (𝑘( ·𝑠𝐷)𝐻)))
177, 11, 16syl2anc 587 . . . 4 (𝜑 → (𝐺 ∈ (𝑁‘{𝐻}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝐺 = (𝑘( ·𝑠𝐷)𝐻)))
182, 17mpbid 235 . . 3 (𝜑 → ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝐺 = (𝑘( ·𝑠𝐷)𝐻))
19 eqid 2798 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
20 eqid 2798 . . . . 5 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
2119, 20, 3, 12, 13, 4ldualsbase 36429 . . . 4 (𝜑 → (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝑊)))
2221rexeqdv 3365 . . 3 (𝜑 → (∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝐺 = (𝑘( ·𝑠𝐷)𝐻) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝐺 = (𝑘( ·𝑠𝐷)𝐻)))
2318, 22mpbid 235 . 2 (𝜑 → ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝐺 = (𝑘( ·𝑠𝐷)𝐻))
24 eqid 2798 . . . 4 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
25 lkrlspeq.l . . . 4 𝐿 = (LKer‘𝑊)
2643ad2ant1 1130 . . . 4 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝑊 ∈ LVec)
27 simp2 1134 . . . . 5 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
28 simp3 1135 . . . . . . 7 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝐺 = (𝑘( ·𝑠𝐷)𝐻))
29 eldifsni 4683 . . . . . . . . 9 (𝐺 ∈ ((𝑁‘{𝐻}) ∖ { 0 }) → 𝐺0 )
301, 29syl 17 . . . . . . . 8 (𝜑𝐺0 )
31303ad2ant1 1130 . . . . . . 7 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝐺0 )
3228, 31eqnetrrd 3055 . . . . . 6 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → (𝑘( ·𝑠𝐷)𝐻) ≠ 0 )
33 eqid 2798 . . . . . . . . . . . 12 (0g‘(Scalar‘𝐷)) = (0g‘(Scalar‘𝐷))
3419, 24, 3, 12, 33, 6ldual0 36443 . . . . . . . . . . 11 (𝜑 → (0g‘(Scalar‘𝐷)) = (0g‘(Scalar‘𝑊)))
35343ad2ant1 1130 . . . . . . . . . 10 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → (0g‘(Scalar‘𝐷)) = (0g‘(Scalar‘𝑊)))
3635eqeq2d 2809 . . . . . . . . 9 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → (𝑘 = (0g‘(Scalar‘𝐷)) ↔ 𝑘 = (0g‘(Scalar‘𝑊))))
37 orc 864 . . . . . . . . 9 (𝑘 = (0g‘(Scalar‘𝐷)) → (𝑘 = (0g‘(Scalar‘𝐷)) ∨ 𝐻 = 0 ))
3836, 37syl6bir 257 . . . . . . . 8 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → (𝑘 = (0g‘(Scalar‘𝑊)) → (𝑘 = (0g‘(Scalar‘𝐷)) ∨ 𝐻 = 0 )))
39 lkrlspeq.o . . . . . . . . 9 0 = (0g𝐷)
403, 4lduallvec 36450 . . . . . . . . . 10 (𝜑𝐷 ∈ LVec)
41403ad2ant1 1130 . . . . . . . . 9 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝐷 ∈ LVec)
42213ad2ant1 1130 . . . . . . . . . 10 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝑊)))
4327, 42eleqtrrd 2893 . . . . . . . . 9 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝑘 ∈ (Base‘(Scalar‘𝐷)))
44113ad2ant1 1130 . . . . . . . . 9 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝐻 ∈ (Base‘𝐷))
459, 14, 12, 13, 33, 39, 41, 43, 44lvecvs0or 19873 . . . . . . . 8 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → ((𝑘( ·𝑠𝐷)𝐻) = 0 ↔ (𝑘 = (0g‘(Scalar‘𝐷)) ∨ 𝐻 = 0 )))
4638, 45sylibrd 262 . . . . . . 7 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → (𝑘 = (0g‘(Scalar‘𝑊)) → (𝑘( ·𝑠𝐷)𝐻) = 0 ))
4746necon3d 3008 . . . . . 6 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → ((𝑘( ·𝑠𝐷)𝐻) ≠ 0𝑘 ≠ (0g‘(Scalar‘𝑊))))
4832, 47mpd 15 . . . . 5 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝑘 ≠ (0g‘(Scalar‘𝑊)))
49 eldifsn 4680 . . . . 5 (𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ↔ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊))))
5027, 48, 49sylanbrc 586 . . . 4 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))
51103ad2ant1 1130 . . . 4 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝐻𝐹)
5219, 20, 24, 8, 25, 3, 14, 26, 50, 51, 28lkreqN 36466 . . 3 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → (𝐿𝐺) = (𝐿𝐻))
5352rexlimdv3a 3245 . 2 (𝜑 → (∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝐺 = (𝑘( ·𝑠𝐷)𝐻) → (𝐿𝐺) = (𝐿𝐻)))
5423, 53mpd 15 1 (𝜑 → (𝐿𝐺) = (𝐿𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wo 844  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wrex 3107  cdif 3878  {csn 4525  cfv 6324  (class class class)co 7135  Basecbs 16475  Scalarcsca 16560   ·𝑠 cvsca 16561  0gc0g 16705  LModclmod 19627  LSpanclspn 19736  LVecclvec 19867  LFnlclfn 36353  LKerclk 36381  LDualcld 36419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-cntz 18439  df-lsm 18753  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-drng 19497  df-lmod 19629  df-lss 19697  df-lsp 19737  df-lvec 19868  df-lshyp 36273  df-lfl 36354  df-lkr 36382  df-ldual 36420
This theorem is referenced by:  lcdlkreqN  38918
  Copyright terms: Public domain W3C validator