Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrlspeqN Structured version   Visualization version   GIF version

Theorem lkrlspeqN 37185
Description: Condition for colinear functionals to have equal kernels. (Contributed by NM, 20-Mar-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
lkrlspeq.f 𝐹 = (LFnl‘𝑊)
lkrlspeq.l 𝐿 = (LKer‘𝑊)
lkrlspeq.d 𝐷 = (LDual‘𝑊)
lkrlspeq.o 0 = (0g𝐷)
lkrlspeq.j 𝑁 = (LSpan‘𝐷)
lkrlspeq.w (𝜑𝑊 ∈ LVec)
lkrlspeq.h (𝜑𝐻𝐹)
lkrlspeq.g (𝜑𝐺 ∈ ((𝑁‘{𝐻}) ∖ { 0 }))
Assertion
Ref Expression
lkrlspeqN (𝜑 → (𝐿𝐺) = (𝐿𝐻))

Proof of Theorem lkrlspeqN
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 lkrlspeq.g . . . . 5 (𝜑𝐺 ∈ ((𝑁‘{𝐻}) ∖ { 0 }))
21eldifad 3899 . . . 4 (𝜑𝐺 ∈ (𝑁‘{𝐻}))
3 lkrlspeq.d . . . . . 6 𝐷 = (LDual‘𝑊)
4 lkrlspeq.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
5 lveclmod 20368 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
64, 5syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
73, 6lduallmod 37167 . . . . 5 (𝜑𝐷 ∈ LMod)
8 lkrlspeq.f . . . . . 6 𝐹 = (LFnl‘𝑊)
9 eqid 2738 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
10 lkrlspeq.h . . . . . 6 (𝜑𝐻𝐹)
118, 3, 9, 4, 10ldualelvbase 37141 . . . . 5 (𝜑𝐻 ∈ (Base‘𝐷))
12 eqid 2738 . . . . . 6 (Scalar‘𝐷) = (Scalar‘𝐷)
13 eqid 2738 . . . . . 6 (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝐷))
14 eqid 2738 . . . . . 6 ( ·𝑠𝐷) = ( ·𝑠𝐷)
15 lkrlspeq.j . . . . . 6 𝑁 = (LSpan‘𝐷)
1612, 13, 9, 14, 15lspsnel 20265 . . . . 5 ((𝐷 ∈ LMod ∧ 𝐻 ∈ (Base‘𝐷)) → (𝐺 ∈ (𝑁‘{𝐻}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝐺 = (𝑘( ·𝑠𝐷)𝐻)))
177, 11, 16syl2anc 584 . . . 4 (𝜑 → (𝐺 ∈ (𝑁‘{𝐻}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝐺 = (𝑘( ·𝑠𝐷)𝐻)))
182, 17mpbid 231 . . 3 (𝜑 → ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝐺 = (𝑘( ·𝑠𝐷)𝐻))
19 eqid 2738 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
20 eqid 2738 . . . . 5 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
2119, 20, 3, 12, 13, 4ldualsbase 37147 . . . 4 (𝜑 → (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝑊)))
2221rexeqdv 3349 . . 3 (𝜑 → (∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝐺 = (𝑘( ·𝑠𝐷)𝐻) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝐺 = (𝑘( ·𝑠𝐷)𝐻)))
2318, 22mpbid 231 . 2 (𝜑 → ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝐺 = (𝑘( ·𝑠𝐷)𝐻))
24 eqid 2738 . . . 4 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
25 lkrlspeq.l . . . 4 𝐿 = (LKer‘𝑊)
2643ad2ant1 1132 . . . 4 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝑊 ∈ LVec)
27 simp2 1136 . . . . 5 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
28 simp3 1137 . . . . . . 7 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝐺 = (𝑘( ·𝑠𝐷)𝐻))
29 eldifsni 4723 . . . . . . . . 9 (𝐺 ∈ ((𝑁‘{𝐻}) ∖ { 0 }) → 𝐺0 )
301, 29syl 17 . . . . . . . 8 (𝜑𝐺0 )
31303ad2ant1 1132 . . . . . . 7 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝐺0 )
3228, 31eqnetrrd 3012 . . . . . 6 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → (𝑘( ·𝑠𝐷)𝐻) ≠ 0 )
33 eqid 2738 . . . . . . . . . . . 12 (0g‘(Scalar‘𝐷)) = (0g‘(Scalar‘𝐷))
3419, 24, 3, 12, 33, 6ldual0 37161 . . . . . . . . . . 11 (𝜑 → (0g‘(Scalar‘𝐷)) = (0g‘(Scalar‘𝑊)))
35343ad2ant1 1132 . . . . . . . . . 10 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → (0g‘(Scalar‘𝐷)) = (0g‘(Scalar‘𝑊)))
3635eqeq2d 2749 . . . . . . . . 9 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → (𝑘 = (0g‘(Scalar‘𝐷)) ↔ 𝑘 = (0g‘(Scalar‘𝑊))))
37 orc 864 . . . . . . . . 9 (𝑘 = (0g‘(Scalar‘𝐷)) → (𝑘 = (0g‘(Scalar‘𝐷)) ∨ 𝐻 = 0 ))
3836, 37syl6bir 253 . . . . . . . 8 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → (𝑘 = (0g‘(Scalar‘𝑊)) → (𝑘 = (0g‘(Scalar‘𝐷)) ∨ 𝐻 = 0 )))
39 lkrlspeq.o . . . . . . . . 9 0 = (0g𝐷)
403, 4lduallvec 37168 . . . . . . . . . 10 (𝜑𝐷 ∈ LVec)
41403ad2ant1 1132 . . . . . . . . 9 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝐷 ∈ LVec)
42213ad2ant1 1132 . . . . . . . . . 10 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝑊)))
4327, 42eleqtrrd 2842 . . . . . . . . 9 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝑘 ∈ (Base‘(Scalar‘𝐷)))
44113ad2ant1 1132 . . . . . . . . 9 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝐻 ∈ (Base‘𝐷))
459, 14, 12, 13, 33, 39, 41, 43, 44lvecvs0or 20370 . . . . . . . 8 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → ((𝑘( ·𝑠𝐷)𝐻) = 0 ↔ (𝑘 = (0g‘(Scalar‘𝐷)) ∨ 𝐻 = 0 )))
4638, 45sylibrd 258 . . . . . . 7 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → (𝑘 = (0g‘(Scalar‘𝑊)) → (𝑘( ·𝑠𝐷)𝐻) = 0 ))
4746necon3d 2964 . . . . . 6 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → ((𝑘( ·𝑠𝐷)𝐻) ≠ 0𝑘 ≠ (0g‘(Scalar‘𝑊))))
4832, 47mpd 15 . . . . 5 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝑘 ≠ (0g‘(Scalar‘𝑊)))
49 eldifsn 4720 . . . . 5 (𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ↔ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊))))
5027, 48, 49sylanbrc 583 . . . 4 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))
51103ad2ant1 1132 . . . 4 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝐻𝐹)
5219, 20, 24, 8, 25, 3, 14, 26, 50, 51, 28lkreqN 37184 . . 3 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → (𝐿𝐺) = (𝐿𝐻))
5352rexlimdv3a 3215 . 2 (𝜑 → (∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝐺 = (𝑘( ·𝑠𝐷)𝐻) → (𝐿𝐺) = (𝐿𝐻)))
5423, 53mpd 15 1 (𝜑 → (𝐿𝐺) = (𝐿𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065  cdif 3884  {csn 4561  cfv 6433  (class class class)co 7275  Basecbs 16912  Scalarcsca 16965   ·𝑠 cvsca 16966  0gc0g 17150  LModclmod 20123  LSpanclspn 20233  LVecclvec 20364  LFnlclfn 37071  LKerclk 37099  LDualcld 37137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-cntz 18923  df-lsm 19241  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-drng 19993  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lvec 20365  df-lshyp 36991  df-lfl 37072  df-lkr 37100  df-ldual 37138
This theorem is referenced by:  lcdlkreqN  39636
  Copyright terms: Public domain W3C validator