Step | Hyp | Ref
| Expression |
1 | | lkrlspeq.g |
. . . . 5
β’ (π β πΊ β ((πβ{π»}) β { 0 })) |
2 | 1 | eldifad 3959 |
. . . 4
β’ (π β πΊ β (πβ{π»})) |
3 | | lkrlspeq.d |
. . . . . 6
β’ π· = (LDualβπ) |
4 | | lkrlspeq.w |
. . . . . . 7
β’ (π β π β LVec) |
5 | | lveclmod 20709 |
. . . . . . 7
β’ (π β LVec β π β LMod) |
6 | 4, 5 | syl 17 |
. . . . . 6
β’ (π β π β LMod) |
7 | 3, 6 | lduallmod 38011 |
. . . . 5
β’ (π β π· β LMod) |
8 | | lkrlspeq.f |
. . . . . 6
β’ πΉ = (LFnlβπ) |
9 | | eqid 2732 |
. . . . . 6
β’
(Baseβπ·) =
(Baseβπ·) |
10 | | lkrlspeq.h |
. . . . . 6
β’ (π β π» β πΉ) |
11 | 8, 3, 9, 4, 10 | ldualelvbase 37985 |
. . . . 5
β’ (π β π» β (Baseβπ·)) |
12 | | eqid 2732 |
. . . . . 6
β’
(Scalarβπ·) =
(Scalarβπ·) |
13 | | eqid 2732 |
. . . . . 6
β’
(Baseβ(Scalarβπ·)) = (Baseβ(Scalarβπ·)) |
14 | | eqid 2732 |
. . . . . 6
β’ (
Β·π βπ·) = ( Β·π
βπ·) |
15 | | lkrlspeq.j |
. . . . . 6
β’ π = (LSpanβπ·) |
16 | 12, 13, 9, 14, 15 | lspsnel 20606 |
. . . . 5
β’ ((π· β LMod β§ π» β (Baseβπ·)) β (πΊ β (πβ{π»}) β βπ β (Baseβ(Scalarβπ·))πΊ = (π( Β·π
βπ·)π»))) |
17 | 7, 11, 16 | syl2anc 584 |
. . . 4
β’ (π β (πΊ β (πβ{π»}) β βπ β (Baseβ(Scalarβπ·))πΊ = (π( Β·π
βπ·)π»))) |
18 | 2, 17 | mpbid 231 |
. . 3
β’ (π β βπ β (Baseβ(Scalarβπ·))πΊ = (π( Β·π
βπ·)π»)) |
19 | | eqid 2732 |
. . . . 5
β’
(Scalarβπ) =
(Scalarβπ) |
20 | | eqid 2732 |
. . . . 5
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
21 | 19, 20, 3, 12, 13, 4 | ldualsbase 37991 |
. . . 4
β’ (π β
(Baseβ(Scalarβπ·)) = (Baseβ(Scalarβπ))) |
22 | 21 | rexeqdv 3326 |
. . 3
β’ (π β (βπ β (Baseβ(Scalarβπ·))πΊ = (π( Β·π
βπ·)π») β βπ β (Baseβ(Scalarβπ))πΊ = (π( Β·π
βπ·)π»))) |
23 | 18, 22 | mpbid 231 |
. 2
β’ (π β βπ β (Baseβ(Scalarβπ))πΊ = (π( Β·π
βπ·)π»)) |
24 | | eqid 2732 |
. . . 4
β’
(0gβ(Scalarβπ)) =
(0gβ(Scalarβπ)) |
25 | | lkrlspeq.l |
. . . 4
β’ πΏ = (LKerβπ) |
26 | 4 | 3ad2ant1 1133 |
. . . 4
β’ ((π β§ π β (Baseβ(Scalarβπ)) β§ πΊ = (π( Β·π
βπ·)π»)) β π β LVec) |
27 | | simp2 1137 |
. . . . 5
β’ ((π β§ π β (Baseβ(Scalarβπ)) β§ πΊ = (π( Β·π
βπ·)π»)) β π β (Baseβ(Scalarβπ))) |
28 | | simp3 1138 |
. . . . . . 7
β’ ((π β§ π β (Baseβ(Scalarβπ)) β§ πΊ = (π( Β·π
βπ·)π»)) β πΊ = (π( Β·π
βπ·)π»)) |
29 | | eldifsni 4792 |
. . . . . . . . 9
β’ (πΊ β ((πβ{π»}) β { 0 }) β πΊ β 0 ) |
30 | 1, 29 | syl 17 |
. . . . . . . 8
β’ (π β πΊ β 0 ) |
31 | 30 | 3ad2ant1 1133 |
. . . . . . 7
β’ ((π β§ π β (Baseβ(Scalarβπ)) β§ πΊ = (π( Β·π
βπ·)π»)) β πΊ β 0 ) |
32 | 28, 31 | eqnetrrd 3009 |
. . . . . 6
β’ ((π β§ π β (Baseβ(Scalarβπ)) β§ πΊ = (π( Β·π
βπ·)π»)) β (π( Β·π
βπ·)π») β 0 ) |
33 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(0gβ(Scalarβπ·)) =
(0gβ(Scalarβπ·)) |
34 | 19, 24, 3, 12, 33, 6 | ldual0 38005 |
. . . . . . . . . . 11
β’ (π β
(0gβ(Scalarβπ·)) =
(0gβ(Scalarβπ))) |
35 | 34 | 3ad2ant1 1133 |
. . . . . . . . . 10
β’ ((π β§ π β (Baseβ(Scalarβπ)) β§ πΊ = (π( Β·π
βπ·)π»)) β
(0gβ(Scalarβπ·)) =
(0gβ(Scalarβπ))) |
36 | 35 | eqeq2d 2743 |
. . . . . . . . 9
β’ ((π β§ π β (Baseβ(Scalarβπ)) β§ πΊ = (π( Β·π
βπ·)π»)) β (π = (0gβ(Scalarβπ·)) β π = (0gβ(Scalarβπ)))) |
37 | | orc 865 |
. . . . . . . . 9
β’ (π =
(0gβ(Scalarβπ·)) β (π = (0gβ(Scalarβπ·)) β¨ π» = 0 )) |
38 | 36, 37 | syl6bir 253 |
. . . . . . . 8
β’ ((π β§ π β (Baseβ(Scalarβπ)) β§ πΊ = (π( Β·π
βπ·)π»)) β (π = (0gβ(Scalarβπ)) β (π = (0gβ(Scalarβπ·)) β¨ π» = 0 ))) |
39 | | lkrlspeq.o |
. . . . . . . . 9
β’ 0 =
(0gβπ·) |
40 | 3, 4 | lduallvec 38012 |
. . . . . . . . . 10
β’ (π β π· β LVec) |
41 | 40 | 3ad2ant1 1133 |
. . . . . . . . 9
β’ ((π β§ π β (Baseβ(Scalarβπ)) β§ πΊ = (π( Β·π
βπ·)π»)) β π· β LVec) |
42 | 21 | 3ad2ant1 1133 |
. . . . . . . . . 10
β’ ((π β§ π β (Baseβ(Scalarβπ)) β§ πΊ = (π( Β·π
βπ·)π»)) β (Baseβ(Scalarβπ·)) =
(Baseβ(Scalarβπ))) |
43 | 27, 42 | eleqtrrd 2836 |
. . . . . . . . 9
β’ ((π β§ π β (Baseβ(Scalarβπ)) β§ πΊ = (π( Β·π
βπ·)π»)) β π β (Baseβ(Scalarβπ·))) |
44 | 11 | 3ad2ant1 1133 |
. . . . . . . . 9
β’ ((π β§ π β (Baseβ(Scalarβπ)) β§ πΊ = (π( Β·π
βπ·)π»)) β π» β (Baseβπ·)) |
45 | 9, 14, 12, 13, 33, 39, 41, 43, 44 | lvecvs0or 20713 |
. . . . . . . 8
β’ ((π β§ π β (Baseβ(Scalarβπ)) β§ πΊ = (π( Β·π
βπ·)π»)) β ((π( Β·π
βπ·)π») = 0 β (π = (0gβ(Scalarβπ·)) β¨ π» = 0 ))) |
46 | 38, 45 | sylibrd 258 |
. . . . . . 7
β’ ((π β§ π β (Baseβ(Scalarβπ)) β§ πΊ = (π( Β·π
βπ·)π»)) β (π = (0gβ(Scalarβπ)) β (π( Β·π
βπ·)π») = 0 )) |
47 | 46 | necon3d 2961 |
. . . . . 6
β’ ((π β§ π β (Baseβ(Scalarβπ)) β§ πΊ = (π( Β·π
βπ·)π»)) β ((π( Β·π
βπ·)π») β 0 β π β
(0gβ(Scalarβπ)))) |
48 | 32, 47 | mpd 15 |
. . . . 5
β’ ((π β§ π β (Baseβ(Scalarβπ)) β§ πΊ = (π( Β·π
βπ·)π»)) β π β
(0gβ(Scalarβπ))) |
49 | | eldifsn 4789 |
. . . . 5
β’ (π β
((Baseβ(Scalarβπ)) β
{(0gβ(Scalarβπ))}) β (π β (Baseβ(Scalarβπ)) β§ π β
(0gβ(Scalarβπ)))) |
50 | 27, 48, 49 | sylanbrc 583 |
. . . 4
β’ ((π β§ π β (Baseβ(Scalarβπ)) β§ πΊ = (π( Β·π
βπ·)π»)) β π β ((Baseβ(Scalarβπ)) β
{(0gβ(Scalarβπ))})) |
51 | 10 | 3ad2ant1 1133 |
. . . 4
β’ ((π β§ π β (Baseβ(Scalarβπ)) β§ πΊ = (π( Β·π
βπ·)π»)) β π» β πΉ) |
52 | 19, 20, 24, 8, 25, 3, 14, 26, 50, 51, 28 | lkreqN 38028 |
. . 3
β’ ((π β§ π β (Baseβ(Scalarβπ)) β§ πΊ = (π( Β·π
βπ·)π»)) β (πΏβπΊ) = (πΏβπ»)) |
53 | 52 | rexlimdv3a 3159 |
. 2
β’ (π β (βπ β (Baseβ(Scalarβπ))πΊ = (π( Β·π
βπ·)π») β (πΏβπΊ) = (πΏβπ»))) |
54 | 23, 53 | mpd 15 |
1
β’ (π β (πΏβπΊ) = (πΏβπ»)) |