Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrlspeqN Structured version   Visualization version   GIF version

Theorem lkrlspeqN 37181
Description: Condition for colinear functionals to have equal kernels. (Contributed by NM, 20-Mar-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
lkrlspeq.f 𝐹 = (LFnl‘𝑊)
lkrlspeq.l 𝐿 = (LKer‘𝑊)
lkrlspeq.d 𝐷 = (LDual‘𝑊)
lkrlspeq.o 0 = (0g𝐷)
lkrlspeq.j 𝑁 = (LSpan‘𝐷)
lkrlspeq.w (𝜑𝑊 ∈ LVec)
lkrlspeq.h (𝜑𝐻𝐹)
lkrlspeq.g (𝜑𝐺 ∈ ((𝑁‘{𝐻}) ∖ { 0 }))
Assertion
Ref Expression
lkrlspeqN (𝜑 → (𝐿𝐺) = (𝐿𝐻))

Proof of Theorem lkrlspeqN
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 lkrlspeq.g . . . . 5 (𝜑𝐺 ∈ ((𝑁‘{𝐻}) ∖ { 0 }))
21eldifad 3904 . . . 4 (𝜑𝐺 ∈ (𝑁‘{𝐻}))
3 lkrlspeq.d . . . . . 6 𝐷 = (LDual‘𝑊)
4 lkrlspeq.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
5 lveclmod 20366 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
64, 5syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
73, 6lduallmod 37163 . . . . 5 (𝜑𝐷 ∈ LMod)
8 lkrlspeq.f . . . . . 6 𝐹 = (LFnl‘𝑊)
9 eqid 2740 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
10 lkrlspeq.h . . . . . 6 (𝜑𝐻𝐹)
118, 3, 9, 4, 10ldualelvbase 37137 . . . . 5 (𝜑𝐻 ∈ (Base‘𝐷))
12 eqid 2740 . . . . . 6 (Scalar‘𝐷) = (Scalar‘𝐷)
13 eqid 2740 . . . . . 6 (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝐷))
14 eqid 2740 . . . . . 6 ( ·𝑠𝐷) = ( ·𝑠𝐷)
15 lkrlspeq.j . . . . . 6 𝑁 = (LSpan‘𝐷)
1612, 13, 9, 14, 15lspsnel 20263 . . . . 5 ((𝐷 ∈ LMod ∧ 𝐻 ∈ (Base‘𝐷)) → (𝐺 ∈ (𝑁‘{𝐻}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝐺 = (𝑘( ·𝑠𝐷)𝐻)))
177, 11, 16syl2anc 584 . . . 4 (𝜑 → (𝐺 ∈ (𝑁‘{𝐻}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝐺 = (𝑘( ·𝑠𝐷)𝐻)))
182, 17mpbid 231 . . 3 (𝜑 → ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝐺 = (𝑘( ·𝑠𝐷)𝐻))
19 eqid 2740 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
20 eqid 2740 . . . . 5 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
2119, 20, 3, 12, 13, 4ldualsbase 37143 . . . 4 (𝜑 → (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝑊)))
2221rexeqdv 3348 . . 3 (𝜑 → (∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝐺 = (𝑘( ·𝑠𝐷)𝐻) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝐺 = (𝑘( ·𝑠𝐷)𝐻)))
2318, 22mpbid 231 . 2 (𝜑 → ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝐺 = (𝑘( ·𝑠𝐷)𝐻))
24 eqid 2740 . . . 4 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
25 lkrlspeq.l . . . 4 𝐿 = (LKer‘𝑊)
2643ad2ant1 1132 . . . 4 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝑊 ∈ LVec)
27 simp2 1136 . . . . 5 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
28 simp3 1137 . . . . . . 7 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝐺 = (𝑘( ·𝑠𝐷)𝐻))
29 eldifsni 4729 . . . . . . . . 9 (𝐺 ∈ ((𝑁‘{𝐻}) ∖ { 0 }) → 𝐺0 )
301, 29syl 17 . . . . . . . 8 (𝜑𝐺0 )
31303ad2ant1 1132 . . . . . . 7 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝐺0 )
3228, 31eqnetrrd 3014 . . . . . 6 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → (𝑘( ·𝑠𝐷)𝐻) ≠ 0 )
33 eqid 2740 . . . . . . . . . . . 12 (0g‘(Scalar‘𝐷)) = (0g‘(Scalar‘𝐷))
3419, 24, 3, 12, 33, 6ldual0 37157 . . . . . . . . . . 11 (𝜑 → (0g‘(Scalar‘𝐷)) = (0g‘(Scalar‘𝑊)))
35343ad2ant1 1132 . . . . . . . . . 10 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → (0g‘(Scalar‘𝐷)) = (0g‘(Scalar‘𝑊)))
3635eqeq2d 2751 . . . . . . . . 9 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → (𝑘 = (0g‘(Scalar‘𝐷)) ↔ 𝑘 = (0g‘(Scalar‘𝑊))))
37 orc 864 . . . . . . . . 9 (𝑘 = (0g‘(Scalar‘𝐷)) → (𝑘 = (0g‘(Scalar‘𝐷)) ∨ 𝐻 = 0 ))
3836, 37syl6bir 253 . . . . . . . 8 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → (𝑘 = (0g‘(Scalar‘𝑊)) → (𝑘 = (0g‘(Scalar‘𝐷)) ∨ 𝐻 = 0 )))
39 lkrlspeq.o . . . . . . . . 9 0 = (0g𝐷)
403, 4lduallvec 37164 . . . . . . . . . 10 (𝜑𝐷 ∈ LVec)
41403ad2ant1 1132 . . . . . . . . 9 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝐷 ∈ LVec)
42213ad2ant1 1132 . . . . . . . . . 10 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝑊)))
4327, 42eleqtrrd 2844 . . . . . . . . 9 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝑘 ∈ (Base‘(Scalar‘𝐷)))
44113ad2ant1 1132 . . . . . . . . 9 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝐻 ∈ (Base‘𝐷))
459, 14, 12, 13, 33, 39, 41, 43, 44lvecvs0or 20368 . . . . . . . 8 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → ((𝑘( ·𝑠𝐷)𝐻) = 0 ↔ (𝑘 = (0g‘(Scalar‘𝐷)) ∨ 𝐻 = 0 )))
4638, 45sylibrd 258 . . . . . . 7 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → (𝑘 = (0g‘(Scalar‘𝑊)) → (𝑘( ·𝑠𝐷)𝐻) = 0 ))
4746necon3d 2966 . . . . . 6 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → ((𝑘( ·𝑠𝐷)𝐻) ≠ 0𝑘 ≠ (0g‘(Scalar‘𝑊))))
4832, 47mpd 15 . . . . 5 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝑘 ≠ (0g‘(Scalar‘𝑊)))
49 eldifsn 4726 . . . . 5 (𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ↔ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊))))
5027, 48, 49sylanbrc 583 . . . 4 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))
51103ad2ant1 1132 . . . 4 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝐻𝐹)
5219, 20, 24, 8, 25, 3, 14, 26, 50, 51, 28lkreqN 37180 . . 3 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → (𝐿𝐺) = (𝐿𝐻))
5352rexlimdv3a 3217 . 2 (𝜑 → (∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝐺 = (𝑘( ·𝑠𝐷)𝐻) → (𝐿𝐺) = (𝐿𝐻)))
5423, 53mpd 15 1 (𝜑 → (𝐿𝐺) = (𝐿𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wo 844  w3a 1086   = wceq 1542  wcel 2110  wne 2945  wrex 3067  cdif 3889  {csn 4567  cfv 6432  (class class class)co 7271  Basecbs 16910  Scalarcsca 16963   ·𝑠 cvsca 16964  0gc0g 17148  LModclmod 20121  LSpanclspn 20231  LVecclvec 20362  LFnlclfn 37067  LKerclk 37095  LDualcld 37133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-of 7527  df-om 7707  df-1st 7824  df-2nd 7825  df-tpos 8033  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-map 8600  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-n0 12234  df-z 12320  df-uz 12582  df-fz 13239  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-sca 16976  df-vsca 16977  df-0g 17150  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-submnd 18429  df-grp 18578  df-minusg 18579  df-sbg 18580  df-subg 18750  df-cntz 18921  df-lsm 19239  df-cmn 19386  df-abl 19387  df-mgp 19719  df-ur 19736  df-ring 19783  df-oppr 19860  df-dvdsr 19881  df-unit 19882  df-invr 19912  df-drng 19991  df-lmod 20123  df-lss 20192  df-lsp 20232  df-lvec 20363  df-lshyp 36987  df-lfl 37068  df-lkr 37096  df-ldual 37134
This theorem is referenced by:  lcdlkreqN  39632
  Copyright terms: Public domain W3C validator