Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrlspeqN Structured version   Visualization version   GIF version

Theorem lkrlspeqN 36439
Description: Condition for colinear functionals to have equal kernels. (Contributed by NM, 20-Mar-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
lkrlspeq.f 𝐹 = (LFnl‘𝑊)
lkrlspeq.l 𝐿 = (LKer‘𝑊)
lkrlspeq.d 𝐷 = (LDual‘𝑊)
lkrlspeq.o 0 = (0g𝐷)
lkrlspeq.j 𝑁 = (LSpan‘𝐷)
lkrlspeq.w (𝜑𝑊 ∈ LVec)
lkrlspeq.h (𝜑𝐻𝐹)
lkrlspeq.g (𝜑𝐺 ∈ ((𝑁‘{𝐻}) ∖ { 0 }))
Assertion
Ref Expression
lkrlspeqN (𝜑 → (𝐿𝐺) = (𝐿𝐻))

Proof of Theorem lkrlspeqN
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 lkrlspeq.g . . . . 5 (𝜑𝐺 ∈ ((𝑁‘{𝐻}) ∖ { 0 }))
21eldifad 3931 . . . 4 (𝜑𝐺 ∈ (𝑁‘{𝐻}))
3 lkrlspeq.d . . . . . 6 𝐷 = (LDual‘𝑊)
4 lkrlspeq.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
5 lveclmod 19880 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
64, 5syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
73, 6lduallmod 36421 . . . . 5 (𝜑𝐷 ∈ LMod)
8 lkrlspeq.f . . . . . 6 𝐹 = (LFnl‘𝑊)
9 eqid 2824 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
10 lkrlspeq.h . . . . . 6 (𝜑𝐻𝐹)
118, 3, 9, 4, 10ldualelvbase 36395 . . . . 5 (𝜑𝐻 ∈ (Base‘𝐷))
12 eqid 2824 . . . . . 6 (Scalar‘𝐷) = (Scalar‘𝐷)
13 eqid 2824 . . . . . 6 (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝐷))
14 eqid 2824 . . . . . 6 ( ·𝑠𝐷) = ( ·𝑠𝐷)
15 lkrlspeq.j . . . . . 6 𝑁 = (LSpan‘𝐷)
1612, 13, 9, 14, 15lspsnel 19777 . . . . 5 ((𝐷 ∈ LMod ∧ 𝐻 ∈ (Base‘𝐷)) → (𝐺 ∈ (𝑁‘{𝐻}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝐺 = (𝑘( ·𝑠𝐷)𝐻)))
177, 11, 16syl2anc 587 . . . 4 (𝜑 → (𝐺 ∈ (𝑁‘{𝐻}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝐺 = (𝑘( ·𝑠𝐷)𝐻)))
182, 17mpbid 235 . . 3 (𝜑 → ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝐺 = (𝑘( ·𝑠𝐷)𝐻))
19 eqid 2824 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
20 eqid 2824 . . . . 5 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
2119, 20, 3, 12, 13, 4ldualsbase 36401 . . . 4 (𝜑 → (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝑊)))
2221rexeqdv 3403 . . 3 (𝜑 → (∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝐺 = (𝑘( ·𝑠𝐷)𝐻) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝐺 = (𝑘( ·𝑠𝐷)𝐻)))
2318, 22mpbid 235 . 2 (𝜑 → ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝐺 = (𝑘( ·𝑠𝐷)𝐻))
24 eqid 2824 . . . 4 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
25 lkrlspeq.l . . . 4 𝐿 = (LKer‘𝑊)
2643ad2ant1 1130 . . . 4 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝑊 ∈ LVec)
27 simp2 1134 . . . . 5 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
28 simp3 1135 . . . . . . 7 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝐺 = (𝑘( ·𝑠𝐷)𝐻))
29 eldifsni 4707 . . . . . . . . 9 (𝐺 ∈ ((𝑁‘{𝐻}) ∖ { 0 }) → 𝐺0 )
301, 29syl 17 . . . . . . . 8 (𝜑𝐺0 )
31303ad2ant1 1130 . . . . . . 7 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝐺0 )
3228, 31eqnetrrd 3082 . . . . . 6 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → (𝑘( ·𝑠𝐷)𝐻) ≠ 0 )
33 eqid 2824 . . . . . . . . . . . 12 (0g‘(Scalar‘𝐷)) = (0g‘(Scalar‘𝐷))
3419, 24, 3, 12, 33, 6ldual0 36415 . . . . . . . . . . 11 (𝜑 → (0g‘(Scalar‘𝐷)) = (0g‘(Scalar‘𝑊)))
35343ad2ant1 1130 . . . . . . . . . 10 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → (0g‘(Scalar‘𝐷)) = (0g‘(Scalar‘𝑊)))
3635eqeq2d 2835 . . . . . . . . 9 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → (𝑘 = (0g‘(Scalar‘𝐷)) ↔ 𝑘 = (0g‘(Scalar‘𝑊))))
37 orc 864 . . . . . . . . 9 (𝑘 = (0g‘(Scalar‘𝐷)) → (𝑘 = (0g‘(Scalar‘𝐷)) ∨ 𝐻 = 0 ))
3836, 37syl6bir 257 . . . . . . . 8 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → (𝑘 = (0g‘(Scalar‘𝑊)) → (𝑘 = (0g‘(Scalar‘𝐷)) ∨ 𝐻 = 0 )))
39 lkrlspeq.o . . . . . . . . 9 0 = (0g𝐷)
403, 4lduallvec 36422 . . . . . . . . . 10 (𝜑𝐷 ∈ LVec)
41403ad2ant1 1130 . . . . . . . . 9 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝐷 ∈ LVec)
42213ad2ant1 1130 . . . . . . . . . 10 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝑊)))
4327, 42eleqtrrd 2919 . . . . . . . . 9 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝑘 ∈ (Base‘(Scalar‘𝐷)))
44113ad2ant1 1130 . . . . . . . . 9 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝐻 ∈ (Base‘𝐷))
459, 14, 12, 13, 33, 39, 41, 43, 44lvecvs0or 19882 . . . . . . . 8 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → ((𝑘( ·𝑠𝐷)𝐻) = 0 ↔ (𝑘 = (0g‘(Scalar‘𝐷)) ∨ 𝐻 = 0 )))
4638, 45sylibrd 262 . . . . . . 7 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → (𝑘 = (0g‘(Scalar‘𝑊)) → (𝑘( ·𝑠𝐷)𝐻) = 0 ))
4746necon3d 3035 . . . . . 6 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → ((𝑘( ·𝑠𝐷)𝐻) ≠ 0𝑘 ≠ (0g‘(Scalar‘𝑊))))
4832, 47mpd 15 . . . . 5 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝑘 ≠ (0g‘(Scalar‘𝑊)))
49 eldifsn 4704 . . . . 5 (𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ↔ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊))))
5027, 48, 49sylanbrc 586 . . . 4 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))
51103ad2ant1 1130 . . . 4 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → 𝐻𝐹)
5219, 20, 24, 8, 25, 3, 14, 26, 50, 51, 28lkreqN 36438 . . 3 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠𝐷)𝐻)) → (𝐿𝐺) = (𝐿𝐻))
5352rexlimdv3a 3278 . 2 (𝜑 → (∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝐺 = (𝑘( ·𝑠𝐷)𝐻) → (𝐿𝐺) = (𝐿𝐻)))
5423, 53mpd 15 1 (𝜑 → (𝐿𝐺) = (𝐿𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wo 844  w3a 1084   = wceq 1538  wcel 2115  wne 3014  wrex 3134  cdif 3916  {csn 4550  cfv 6345  (class class class)co 7151  Basecbs 16485  Scalarcsca 16570   ·𝑠 cvsca 16571  0gc0g 16715  LModclmod 19636  LSpanclspn 19745  LVecclvec 19876  LFnlclfn 36325  LKerclk 36353  LDualcld 36391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6137  df-ord 6183  df-on 6184  df-lim 6185  df-suc 6186  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7405  df-om 7577  df-1st 7686  df-2nd 7687  df-tpos 7890  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-1o 8100  df-oadd 8104  df-er 8287  df-map 8406  df-en 8508  df-dom 8509  df-sdom 8510  df-fin 8511  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11637  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-n0 11897  df-z 11981  df-uz 12243  df-fz 12897  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-subg 18278  df-cntz 18449  df-lsm 18763  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-oppr 19378  df-dvdsr 19396  df-unit 19397  df-invr 19427  df-drng 19506  df-lmod 19638  df-lss 19706  df-lsp 19746  df-lvec 19877  df-lshyp 36245  df-lfl 36326  df-lkr 36354  df-ldual 36392
This theorem is referenced by:  lcdlkreqN  38890
  Copyright terms: Public domain W3C validator