| Step | Hyp | Ref
| Expression |
| 1 | | lkrlspeq.g |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ ((𝑁‘{𝐻}) ∖ { 0 })) |
| 2 | 1 | eldifad 3963 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ (𝑁‘{𝐻})) |
| 3 | | lkrlspeq.d |
. . . . . 6
⊢ 𝐷 = (LDual‘𝑊) |
| 4 | | lkrlspeq.w |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ LVec) |
| 5 | | lveclmod 21105 |
. . . . . . 7
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) |
| 6 | 4, 5 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑊 ∈ LMod) |
| 7 | 3, 6 | lduallmod 39154 |
. . . . 5
⊢ (𝜑 → 𝐷 ∈ LMod) |
| 8 | | lkrlspeq.f |
. . . . . 6
⊢ 𝐹 = (LFnl‘𝑊) |
| 9 | | eqid 2737 |
. . . . . 6
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 10 | | lkrlspeq.h |
. . . . . 6
⊢ (𝜑 → 𝐻 ∈ 𝐹) |
| 11 | 8, 3, 9, 4, 10 | ldualelvbase 39128 |
. . . . 5
⊢ (𝜑 → 𝐻 ∈ (Base‘𝐷)) |
| 12 | | eqid 2737 |
. . . . . 6
⊢
(Scalar‘𝐷) =
(Scalar‘𝐷) |
| 13 | | eqid 2737 |
. . . . . 6
⊢
(Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝐷)) |
| 14 | | eqid 2737 |
. . . . . 6
⊢ (
·𝑠 ‘𝐷) = ( ·𝑠
‘𝐷) |
| 15 | | lkrlspeq.j |
. . . . . 6
⊢ 𝑁 = (LSpan‘𝐷) |
| 16 | 12, 13, 9, 14, 15 | ellspsn 21001 |
. . . . 5
⊢ ((𝐷 ∈ LMod ∧ 𝐻 ∈ (Base‘𝐷)) → (𝐺 ∈ (𝑁‘{𝐻}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝐺 = (𝑘( ·𝑠
‘𝐷)𝐻))) |
| 17 | 7, 11, 16 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (𝐺 ∈ (𝑁‘{𝐻}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝐺 = (𝑘( ·𝑠
‘𝐷)𝐻))) |
| 18 | 2, 17 | mpbid 232 |
. . 3
⊢ (𝜑 → ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝐺 = (𝑘( ·𝑠
‘𝐷)𝐻)) |
| 19 | | eqid 2737 |
. . . 4
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
| 20 | | eqid 2737 |
. . . 4
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) |
| 21 | 19, 20, 3, 12, 13, 4 | ldualsbase 39134 |
. . 3
⊢ (𝜑 →
(Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝑊))) |
| 22 | 18, 21 | rexeqtrdv 3329 |
. 2
⊢ (𝜑 → ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝐺 = (𝑘( ·𝑠
‘𝐷)𝐻)) |
| 23 | | eqid 2737 |
. . . 4
⊢
(0g‘(Scalar‘𝑊)) =
(0g‘(Scalar‘𝑊)) |
| 24 | | lkrlspeq.l |
. . . 4
⊢ 𝐿 = (LKer‘𝑊) |
| 25 | 4 | 3ad2ant1 1134 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠
‘𝐷)𝐻)) → 𝑊 ∈ LVec) |
| 26 | | simp2 1138 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠
‘𝐷)𝐻)) → 𝑘 ∈ (Base‘(Scalar‘𝑊))) |
| 27 | | simp3 1139 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠
‘𝐷)𝐻)) → 𝐺 = (𝑘( ·𝑠
‘𝐷)𝐻)) |
| 28 | | eldifsni 4790 |
. . . . . . . . 9
⊢ (𝐺 ∈ ((𝑁‘{𝐻}) ∖ { 0 }) → 𝐺 ≠ 0 ) |
| 29 | 1, 28 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ≠ 0 ) |
| 30 | 29 | 3ad2ant1 1134 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠
‘𝐷)𝐻)) → 𝐺 ≠ 0 ) |
| 31 | 27, 30 | eqnetrrd 3009 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠
‘𝐷)𝐻)) → (𝑘( ·𝑠
‘𝐷)𝐻) ≠ 0 ) |
| 32 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(0g‘(Scalar‘𝐷)) =
(0g‘(Scalar‘𝐷)) |
| 33 | 19, 23, 3, 12, 32, 6 | ldual0 39148 |
. . . . . . . . . . 11
⊢ (𝜑 →
(0g‘(Scalar‘𝐷)) =
(0g‘(Scalar‘𝑊))) |
| 34 | 33 | 3ad2ant1 1134 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠
‘𝐷)𝐻)) →
(0g‘(Scalar‘𝐷)) =
(0g‘(Scalar‘𝑊))) |
| 35 | 34 | eqeq2d 2748 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠
‘𝐷)𝐻)) → (𝑘 = (0g‘(Scalar‘𝐷)) ↔ 𝑘 = (0g‘(Scalar‘𝑊)))) |
| 36 | | orc 868 |
. . . . . . . . 9
⊢ (𝑘 =
(0g‘(Scalar‘𝐷)) → (𝑘 = (0g‘(Scalar‘𝐷)) ∨ 𝐻 = 0 )) |
| 37 | 35, 36 | biimtrrdi 254 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠
‘𝐷)𝐻)) → (𝑘 = (0g‘(Scalar‘𝑊)) → (𝑘 = (0g‘(Scalar‘𝐷)) ∨ 𝐻 = 0 ))) |
| 38 | | lkrlspeq.o |
. . . . . . . . 9
⊢ 0 =
(0g‘𝐷) |
| 39 | 3, 4 | lduallvec 39155 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈ LVec) |
| 40 | 39 | 3ad2ant1 1134 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠
‘𝐷)𝐻)) → 𝐷 ∈ LVec) |
| 41 | 21 | 3ad2ant1 1134 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠
‘𝐷)𝐻)) → (Base‘(Scalar‘𝐷)) =
(Base‘(Scalar‘𝑊))) |
| 42 | 26, 41 | eleqtrrd 2844 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠
‘𝐷)𝐻)) → 𝑘 ∈ (Base‘(Scalar‘𝐷))) |
| 43 | 11 | 3ad2ant1 1134 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠
‘𝐷)𝐻)) → 𝐻 ∈ (Base‘𝐷)) |
| 44 | 9, 14, 12, 13, 32, 38, 40, 42, 43 | lvecvs0or 21110 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠
‘𝐷)𝐻)) → ((𝑘( ·𝑠
‘𝐷)𝐻) = 0 ↔ (𝑘 = (0g‘(Scalar‘𝐷)) ∨ 𝐻 = 0 ))) |
| 45 | 37, 44 | sylibrd 259 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠
‘𝐷)𝐻)) → (𝑘 = (0g‘(Scalar‘𝑊)) → (𝑘( ·𝑠
‘𝐷)𝐻) = 0 )) |
| 46 | 45 | necon3d 2961 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠
‘𝐷)𝐻)) → ((𝑘( ·𝑠
‘𝐷)𝐻) ≠ 0 → 𝑘 ≠
(0g‘(Scalar‘𝑊)))) |
| 47 | 31, 46 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠
‘𝐷)𝐻)) → 𝑘 ≠
(0g‘(Scalar‘𝑊))) |
| 48 | | eldifsn 4786 |
. . . . 5
⊢ (𝑘 ∈
((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ↔ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠
(0g‘(Scalar‘𝑊)))) |
| 49 | 26, 47, 48 | sylanbrc 583 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠
‘𝐷)𝐻)) → 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) |
| 50 | 10 | 3ad2ant1 1134 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠
‘𝐷)𝐻)) → 𝐻 ∈ 𝐹) |
| 51 | 19, 20, 23, 8, 24, 3, 14, 25, 49, 50, 27 | lkreqN 39171 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐺 = (𝑘( ·𝑠
‘𝐷)𝐻)) → (𝐿‘𝐺) = (𝐿‘𝐻)) |
| 52 | 51 | rexlimdv3a 3159 |
. 2
⊢ (𝜑 → (∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝐺 = (𝑘( ·𝑠
‘𝐷)𝐻) → (𝐿‘𝐺) = (𝐿‘𝐻))) |
| 53 | 22, 52 | mpd 15 |
1
⊢ (𝜑 → (𝐿‘𝐺) = (𝐿‘𝐻)) |