Step | Hyp | Ref
| Expression |
1 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑖 = 𝑘 → ((𝐹‘𝐶)‘𝑖) = ((𝐹‘𝐶)‘𝑘)) |
2 | 1 | breq2d 5082 |
. . . . . 6
⊢ (𝑖 = 𝑘 → (0 ≤ ((𝐹‘𝐶)‘𝑖) ↔ 0 ≤ ((𝐹‘𝐶)‘𝑘))) |
3 | 2 | elrab 3617 |
. . . . 5
⊢ (𝑘 ∈ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)} ↔ (𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘))) |
4 | 3 | anbi1i 623 |
. . . 4
⊢ ((𝑘 ∈ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)} ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)}𝑗 ≤ 𝑘) ↔ ((𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘)) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)}𝑗 ≤ 𝑘)) |
5 | | simprl 767 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘))) → 𝑘 ∈ (1...𝐽)) |
6 | 5 | adantrr 713 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘)) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)}𝑗 ≤ 𝑘)) → 𝑘 ∈ (1...𝐽)) |
7 | | fzssuz 13226 |
. . . . . . . . . . . . . 14
⊢
(1...𝐽) ⊆
(ℤ≥‘1) |
8 | | uzssz 12532 |
. . . . . . . . . . . . . 14
⊢
(ℤ≥‘1) ⊆ ℤ |
9 | 7, 8 | sstri 3926 |
. . . . . . . . . . . . 13
⊢
(1...𝐽) ⊆
ℤ |
10 | | zssre 12256 |
. . . . . . . . . . . . 13
⊢ ℤ
⊆ ℝ |
11 | 9, 10 | sstri 3926 |
. . . . . . . . . . . 12
⊢
(1...𝐽) ⊆
ℝ |
12 | 11 | sseli 3913 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (1...𝐽) → 𝑘 ∈ ℝ) |
13 | 12 | ltp1d 11835 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (1...𝐽) → 𝑘 < (𝑘 + 1)) |
14 | | 1red 10907 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (1...𝐽) → 1 ∈ ℝ) |
15 | 12, 14 | readdcld 10935 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (1...𝐽) → (𝑘 + 1) ∈ ℝ) |
16 | 12, 15 | ltnled 11052 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (1...𝐽) → (𝑘 < (𝑘 + 1) ↔ ¬ (𝑘 + 1) ≤ 𝑘)) |
17 | 13, 16 | mpbid 231 |
. . . . . . . . 9
⊢ (𝑘 ∈ (1...𝐽) → ¬ (𝑘 + 1) ≤ 𝑘) |
18 | 6, 17 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘)) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)}𝑗 ≤ 𝑘)) → ¬ (𝑘 + 1) ≤ 𝑘) |
19 | | simprr 769 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘)) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)}𝑗 ≤ 𝑘)) → ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)}𝑗 ≤ 𝑘) |
20 | | ballotlemfcc.4 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐹‘𝐶)‘𝐽) < 0) |
21 | 20 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 = 𝐽) → ((𝐹‘𝐶)‘𝐽) < 0) |
22 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 = 𝐽) → 𝑘 = 𝐽) |
23 | 22 | fveq2d 6760 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 = 𝐽) → ((𝐹‘𝐶)‘𝑘) = ((𝐹‘𝐶)‘𝐽)) |
24 | 23 | breq1d 5080 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 = 𝐽) → (((𝐹‘𝐶)‘𝑘) < 0 ↔ ((𝐹‘𝐶)‘𝐽) < 0)) |
25 | | ballotlemfcc.j |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝐽 ∈ ℕ) |
26 | | elnnuz 12551 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐽 ∈ ℕ ↔ 𝐽 ∈
(ℤ≥‘1)) |
27 | 25, 26 | sylib 217 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐽 ∈
(ℤ≥‘1)) |
28 | | eluzfz2 13193 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐽 ∈
(ℤ≥‘1) → 𝐽 ∈ (1...𝐽)) |
29 | 27, 28 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐽 ∈ (1...𝐽)) |
30 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝐽 → (𝑘 ∈ (1...𝐽) ↔ 𝐽 ∈ (1...𝐽))) |
31 | 29, 30 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑘 = 𝐽 → 𝑘 ∈ (1...𝐽))) |
32 | 31 | anc2li 555 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑘 = 𝐽 → (𝜑 ∧ 𝑘 ∈ (1...𝐽)))) |
33 | | 1eluzge0 12561 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 1 ∈
(ℤ≥‘0) |
34 | | fzss1 13224 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (1 ∈
(ℤ≥‘0) → (1...𝐽) ⊆ (0...𝐽)) |
35 | 34 | sseld 3916 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (1 ∈
(ℤ≥‘0) → (𝑘 ∈ (1...𝐽) → 𝑘 ∈ (0...𝐽))) |
36 | 33, 35 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ (1...𝐽) → 𝑘 ∈ (0...𝐽)) |
37 | | ballotth.m |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑀 ∈ ℕ |
38 | | ballotth.n |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑁 ∈ ℕ |
39 | | ballotth.o |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
40 | | ballotth.p |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
41 | | ballotth.f |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦
((♯‘((1...𝑖)
∩ 𝑐)) −
(♯‘((1...𝑖)
∖ 𝑐))))) |
42 | | ballotlemfcc.c |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝐶 ∈ 𝑂) |
43 | 42 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝐶 ∈ 𝑂) |
44 | | elfzelz 13185 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ (0...𝐽) → 𝑘 ∈ ℤ) |
45 | 44 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝑘 ∈ ℤ) |
46 | 37, 38, 39, 40, 41, 43, 45 | ballotlemfelz 32357 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝐹‘𝐶)‘𝑘) ∈ ℤ) |
47 | 46 | zred 12355 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝐹‘𝐶)‘𝑘) ∈ ℝ) |
48 | | 0red 10909 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 0 ∈ ℝ) |
49 | 47, 48 | ltnled 11052 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (((𝐹‘𝐶)‘𝑘) < 0 ↔ ¬ 0 ≤ ((𝐹‘𝐶)‘𝑘))) |
50 | 36, 49 | sylan2 592 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝐽)) → (((𝐹‘𝐶)‘𝑘) < 0 ↔ ¬ 0 ≤ ((𝐹‘𝐶)‘𝑘))) |
51 | 32, 50 | syl6 35 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑘 = 𝐽 → (((𝐹‘𝐶)‘𝑘) < 0 ↔ ¬ 0 ≤ ((𝐹‘𝐶)‘𝑘)))) |
52 | 51 | imp 406 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 = 𝐽) → (((𝐹‘𝐶)‘𝑘) < 0 ↔ ¬ 0 ≤ ((𝐹‘𝐶)‘𝑘))) |
53 | 24, 52 | bitr3d 280 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 = 𝐽) → (((𝐹‘𝐶)‘𝐽) < 0 ↔ ¬ 0 ≤ ((𝐹‘𝐶)‘𝑘))) |
54 | 21, 53 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 = 𝐽) → ¬ 0 ≤ ((𝐹‘𝐶)‘𝑘)) |
55 | 54 | ex 412 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑘 = 𝐽 → ¬ 0 ≤ ((𝐹‘𝐶)‘𝑘))) |
56 | 55 | con2d 134 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0 ≤ ((𝐹‘𝐶)‘𝑘) → ¬ 𝑘 = 𝐽)) |
57 | | nn1m1nn 11924 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐽 ∈ ℕ → (𝐽 = 1 ∨ (𝐽 − 1) ∈
ℕ)) |
58 | 25, 57 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝐽 = 1 ∨ (𝐽 − 1) ∈
ℕ)) |
59 | | ballotlemfcc.3 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → ∃𝑖 ∈ (1...𝐽)0 ≤ ((𝐹‘𝐶)‘𝑖)) |
60 | 59 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝐽 = 1) → ∃𝑖 ∈ (1...𝐽)0 ≤ ((𝐹‘𝐶)‘𝑖)) |
61 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝐽 = 1 → (𝐽...𝐽) = (1...𝐽)) |
62 | 61 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝐽 = 1) → (𝐽...𝐽) = (1...𝐽)) |
63 | 25 | nnzd 12354 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → 𝐽 ∈ ℤ) |
64 | | fzsn 13227 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝐽 ∈ ℤ → (𝐽...𝐽) = {𝐽}) |
65 | 63, 64 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → (𝐽...𝐽) = {𝐽}) |
66 | 65 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝐽 = 1) → (𝐽...𝐽) = {𝐽}) |
67 | 62, 66 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝐽 = 1) → (1...𝐽) = {𝐽}) |
68 | 67 | rexeqdv 3340 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝐽 = 1) → (∃𝑖 ∈ (1...𝐽)0 ≤ ((𝐹‘𝐶)‘𝑖) ↔ ∃𝑖 ∈ {𝐽}0 ≤ ((𝐹‘𝐶)‘𝑖))) |
69 | 60, 68 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝐽 = 1) → ∃𝑖 ∈ {𝐽}0 ≤ ((𝐹‘𝐶)‘𝑖)) |
70 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑖 = 𝐽 → ((𝐹‘𝐶)‘𝑖) = ((𝐹‘𝐶)‘𝐽)) |
71 | 70 | breq2d 5082 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑖 = 𝐽 → (0 ≤ ((𝐹‘𝐶)‘𝑖) ↔ 0 ≤ ((𝐹‘𝐶)‘𝐽))) |
72 | 71 | rexsng 4607 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐽 ∈ ℕ →
(∃𝑖 ∈ {𝐽}0 ≤ ((𝐹‘𝐶)‘𝑖) ↔ 0 ≤ ((𝐹‘𝐶)‘𝐽))) |
73 | 25, 72 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (∃𝑖 ∈ {𝐽}0 ≤ ((𝐹‘𝐶)‘𝑖) ↔ 0 ≤ ((𝐹‘𝐶)‘𝐽))) |
74 | 73 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝐽 = 1) → (∃𝑖 ∈ {𝐽}0 ≤ ((𝐹‘𝐶)‘𝑖) ↔ 0 ≤ ((𝐹‘𝐶)‘𝐽))) |
75 | 69, 74 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝐽 = 1) → 0 ≤ ((𝐹‘𝐶)‘𝐽)) |
76 | 20 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝐽 = 1) → ((𝐹‘𝐶)‘𝐽) < 0) |
77 | 37, 38, 39, 40, 41, 42, 63 | ballotlemfelz 32357 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → ((𝐹‘𝐶)‘𝐽) ∈ ℤ) |
78 | 77 | zred 12355 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → ((𝐹‘𝐶)‘𝐽) ∈ ℝ) |
79 | | 0red 10909 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 0 ∈
ℝ) |
80 | 78, 79 | ltnled 11052 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (((𝐹‘𝐶)‘𝐽) < 0 ↔ ¬ 0 ≤ ((𝐹‘𝐶)‘𝐽))) |
81 | 80 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝐽 = 1) → (((𝐹‘𝐶)‘𝐽) < 0 ↔ ¬ 0 ≤ ((𝐹‘𝐶)‘𝐽))) |
82 | 76, 81 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝐽 = 1) → ¬ 0 ≤ ((𝐹‘𝐶)‘𝐽)) |
83 | 75, 82 | pm2.65da 813 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ¬ 𝐽 = 1) |
84 | | biortn 934 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (¬
𝐽 = 1 → ((𝐽 − 1) ∈ ℕ
↔ (¬ ¬ 𝐽 = 1
∨ (𝐽 − 1) ∈
ℕ))) |
85 | 83, 84 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝐽 − 1) ∈ ℕ ↔ (¬
¬ 𝐽 = 1 ∨ (𝐽 − 1) ∈
ℕ))) |
86 | | notnotb 314 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐽 = 1 ↔ ¬ ¬ 𝐽 = 1) |
87 | 86 | orbi1i 910 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐽 = 1 ∨ (𝐽 − 1) ∈ ℕ) ↔ (¬
¬ 𝐽 = 1 ∨ (𝐽 − 1) ∈
ℕ)) |
88 | 85, 87 | bitr4di 288 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝐽 − 1) ∈ ℕ ↔ (𝐽 = 1 ∨ (𝐽 − 1) ∈
ℕ))) |
89 | 58, 88 | mpbird 256 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐽 − 1) ∈ ℕ) |
90 | | elnnuz 12551 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐽 − 1) ∈ ℕ
↔ (𝐽 − 1) ∈
(ℤ≥‘1)) |
91 | 89, 90 | sylib 217 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐽 − 1) ∈
(ℤ≥‘1)) |
92 | | elfzp1 13235 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐽 − 1) ∈
(ℤ≥‘1) → (𝑘 ∈ (1...((𝐽 − 1) + 1)) ↔ (𝑘 ∈ (1...(𝐽 − 1)) ∨ 𝑘 = ((𝐽 − 1) + 1)))) |
93 | 91, 92 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑘 ∈ (1...((𝐽 − 1) + 1)) ↔ (𝑘 ∈ (1...(𝐽 − 1)) ∨ 𝑘 = ((𝐽 − 1) + 1)))) |
94 | 25 | nncnd 11919 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐽 ∈ ℂ) |
95 | | 1cnd 10901 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 1 ∈
ℂ) |
96 | 94, 95 | npcand 11266 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝐽 − 1) + 1) = 𝐽) |
97 | 96 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (1...((𝐽 − 1) + 1)) = (1...𝐽)) |
98 | 97 | eleq2d 2824 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑘 ∈ (1...((𝐽 − 1) + 1)) ↔ 𝑘 ∈ (1...𝐽))) |
99 | 96 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑘 = ((𝐽 − 1) + 1) ↔ 𝑘 = 𝐽)) |
100 | 99 | orbi2d 912 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑘 ∈ (1...(𝐽 − 1)) ∨ 𝑘 = ((𝐽 − 1) + 1)) ↔ (𝑘 ∈ (1...(𝐽 − 1)) ∨ 𝑘 = 𝐽))) |
101 | 93, 98, 100 | 3bitr3d 308 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑘 ∈ (1...𝐽) ↔ (𝑘 ∈ (1...(𝐽 − 1)) ∨ 𝑘 = 𝐽))) |
102 | | orcom 866 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ (1...(𝐽 − 1)) ∨ 𝑘 = 𝐽) ↔ (𝑘 = 𝐽 ∨ 𝑘 ∈ (1...(𝐽 − 1)))) |
103 | 101, 102 | bitrdi 286 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑘 ∈ (1...𝐽) ↔ (𝑘 = 𝐽 ∨ 𝑘 ∈ (1...(𝐽 − 1))))) |
104 | 103 | biimpd 228 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑘 ∈ (1...𝐽) → (𝑘 = 𝐽 ∨ 𝑘 ∈ (1...(𝐽 − 1))))) |
105 | | pm5.6 998 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ (1...𝐽) ∧ ¬ 𝑘 = 𝐽) → 𝑘 ∈ (1...(𝐽 − 1))) ↔ (𝑘 ∈ (1...𝐽) → (𝑘 = 𝐽 ∨ 𝑘 ∈ (1...(𝐽 − 1))))) |
106 | 104, 105 | sylibr 233 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑘 ∈ (1...𝐽) ∧ ¬ 𝑘 = 𝐽) → 𝑘 ∈ (1...(𝐽 − 1)))) |
107 | 89 | nnzd 12354 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐽 − 1) ∈ ℤ) |
108 | | 1z 12280 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
ℤ |
109 | 107, 108 | jctil 519 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (1 ∈ ℤ ∧
(𝐽 − 1) ∈
ℤ)) |
110 | | elfzelz 13185 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ (1...(𝐽 − 1)) → 𝑘 ∈ ℤ) |
111 | 110, 108 | jctir 520 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (1...(𝐽 − 1)) → (𝑘 ∈ ℤ ∧ 1 ∈
ℤ)) |
112 | | fzaddel 13219 |
. . . . . . . . . . . . . . . . . 18
⊢ (((1
∈ ℤ ∧ (𝐽
− 1) ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ 1 ∈ ℤ))
→ (𝑘 ∈
(1...(𝐽 − 1)) ↔
(𝑘 + 1) ∈ ((1 +
1)...((𝐽 − 1) +
1)))) |
113 | 109, 111,
112 | syl2an 595 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐽 − 1))) → (𝑘 ∈ (1...(𝐽 − 1)) ↔ (𝑘 + 1) ∈ ((1 + 1)...((𝐽 − 1) + 1)))) |
114 | 113 | biimp3a 1467 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐽 − 1)) ∧ 𝑘 ∈ (1...(𝐽 − 1))) → (𝑘 + 1) ∈ ((1 + 1)...((𝐽 − 1) + 1))) |
115 | 114 | 3anidm23 1419 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐽 − 1))) → (𝑘 + 1) ∈ ((1 + 1)...((𝐽 − 1) + 1))) |
116 | | 1p1e2 12028 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (1 + 1) =
2 |
117 | 116 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (1 + 1) =
2) |
118 | 117, 96 | oveq12d 7273 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((1 + 1)...((𝐽 − 1) + 1)) = (2...𝐽)) |
119 | 118 | eleq2d 2824 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑘 + 1) ∈ ((1 + 1)...((𝐽 − 1) + 1)) ↔ (𝑘 + 1) ∈ (2...𝐽))) |
120 | | 2eluzge1 12563 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 ∈
(ℤ≥‘1) |
121 | | fzss1 13224 |
. . . . . . . . . . . . . . . . . . 19
⊢ (2 ∈
(ℤ≥‘1) → (2...𝐽) ⊆ (1...𝐽)) |
122 | 120, 121 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢
(2...𝐽) ⊆
(1...𝐽) |
123 | 122 | sseli 3913 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 + 1) ∈ (2...𝐽) → (𝑘 + 1) ∈ (1...𝐽)) |
124 | 119, 123 | syl6bi 252 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑘 + 1) ∈ ((1 + 1)...((𝐽 − 1) + 1)) → (𝑘 + 1) ∈ (1...𝐽))) |
125 | 124 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐽 − 1))) → ((𝑘 + 1) ∈ ((1 + 1)...((𝐽 − 1) + 1)) → (𝑘 + 1) ∈ (1...𝐽))) |
126 | 115, 125 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐽 − 1))) → (𝑘 + 1) ∈ (1...𝐽)) |
127 | 126 | ex 412 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑘 ∈ (1...(𝐽 − 1)) → (𝑘 + 1) ∈ (1...𝐽))) |
128 | 106, 127 | syld 47 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑘 ∈ (1...𝐽) ∧ ¬ 𝑘 = 𝐽) → (𝑘 + 1) ∈ (1...𝐽))) |
129 | 56, 128 | sylan2d 604 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘)) → (𝑘 + 1) ∈ (1...𝐽))) |
130 | 129 | imp 406 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘))) → (𝑘 + 1) ∈ (1...𝐽)) |
131 | 130 | adantrr 713 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘)) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)}𝑗 ≤ 𝑘)) → (𝑘 + 1) ∈ (1...𝐽)) |
132 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = (𝑘 + 1) → ((𝐹‘𝐶)‘𝑖) = ((𝐹‘𝐶)‘(𝑘 + 1))) |
133 | 132 | breq2d 5082 |
. . . . . . . . . . . . 13
⊢ (𝑖 = (𝑘 + 1) → (0 ≤ ((𝐹‘𝐶)‘𝑖) ↔ 0 ≤ ((𝐹‘𝐶)‘(𝑘 + 1)))) |
134 | 133 | elrab 3617 |
. . . . . . . . . . . 12
⊢ ((𝑘 + 1) ∈ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)} ↔ ((𝑘 + 1) ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘(𝑘 + 1)))) |
135 | | breq1 5073 |
. . . . . . . . . . . . 13
⊢ (𝑗 = (𝑘 + 1) → (𝑗 ≤ 𝑘 ↔ (𝑘 + 1) ≤ 𝑘)) |
136 | 135 | rspccva 3551 |
. . . . . . . . . . . 12
⊢
((∀𝑗 ∈
{𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)}𝑗 ≤ 𝑘 ∧ (𝑘 + 1) ∈ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)}) → (𝑘 + 1) ≤ 𝑘) |
137 | 134, 136 | sylan2br 594 |
. . . . . . . . . . 11
⊢
((∀𝑗 ∈
{𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)}𝑗 ≤ 𝑘 ∧ ((𝑘 + 1) ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘(𝑘 + 1)))) → (𝑘 + 1) ≤ 𝑘) |
138 | 137 | expr 456 |
. . . . . . . . . 10
⊢
((∀𝑗 ∈
{𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)}𝑗 ≤ 𝑘 ∧ (𝑘 + 1) ∈ (1...𝐽)) → (0 ≤ ((𝐹‘𝐶)‘(𝑘 + 1)) → (𝑘 + 1) ≤ 𝑘)) |
139 | 138 | con3d 152 |
. . . . . . . . 9
⊢
((∀𝑗 ∈
{𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)}𝑗 ≤ 𝑘 ∧ (𝑘 + 1) ∈ (1...𝐽)) → (¬ (𝑘 + 1) ≤ 𝑘 → ¬ 0 ≤ ((𝐹‘𝐶)‘(𝑘 + 1)))) |
140 | 19, 131, 139 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘)) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)}𝑗 ≤ 𝑘)) → (¬ (𝑘 + 1) ≤ 𝑘 → ¬ 0 ≤ ((𝐹‘𝐶)‘(𝑘 + 1)))) |
141 | 18, 140 | mpd 15 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘)) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)}𝑗 ≤ 𝑘)) → ¬ 0 ≤ ((𝐹‘𝐶)‘(𝑘 + 1))) |
142 | | simplrr 774 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘)) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)}𝑗 ≤ 𝑘)) ∧ (𝑘 + 1) ∈ 𝐶) → ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)}𝑗 ≤ 𝑘) |
143 | 131 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘)) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)}𝑗 ≤ 𝑘)) ∧ (𝑘 + 1) ∈ 𝐶) → (𝑘 + 1) ∈ (1...𝐽)) |
144 | | 0red 10909 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘))) ∧ (𝑘 + 1) ∈ 𝐶) → 0 ∈ ℝ) |
145 | | simpll 763 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘))) ∧ (𝑘 + 1) ∈ 𝐶) → 𝜑) |
146 | 130 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘))) ∧ (𝑘 + 1) ∈ 𝐶) → (𝑘 + 1) ∈ (1...𝐽)) |
147 | 34 | sseld 3916 |
. . . . . . . . . . . . . . 15
⊢ (1 ∈
(ℤ≥‘0) → ((𝑘 + 1) ∈ (1...𝐽) → (𝑘 + 1) ∈ (0...𝐽))) |
148 | 33, 146, 147 | mpsyl 68 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘))) ∧ (𝑘 + 1) ∈ 𝐶) → (𝑘 + 1) ∈ (0...𝐽)) |
149 | 42 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑘 + 1) ∈ (0...𝐽)) → 𝐶 ∈ 𝑂) |
150 | | elfzelz 13185 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 + 1) ∈ (0...𝐽) → (𝑘 + 1) ∈ ℤ) |
151 | 150 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑘 + 1) ∈ (0...𝐽)) → (𝑘 + 1) ∈ ℤ) |
152 | 37, 38, 39, 40, 41, 149, 151 | ballotlemfelz 32357 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑘 + 1) ∈ (0...𝐽)) → ((𝐹‘𝐶)‘(𝑘 + 1)) ∈ ℤ) |
153 | 152 | zred 12355 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 + 1) ∈ (0...𝐽)) → ((𝐹‘𝐶)‘(𝑘 + 1)) ∈ ℝ) |
154 | 145, 148,
153 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘))) ∧ (𝑘 + 1) ∈ 𝐶) → ((𝐹‘𝐶)‘(𝑘 + 1)) ∈ ℝ) |
155 | | simplrr 774 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘))) ∧ (𝑘 + 1) ∈ 𝐶) → 0 ≤ ((𝐹‘𝐶)‘𝑘)) |
156 | 5 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘))) ∧ (𝑘 + 1) ∈ 𝐶) → 𝑘 ∈ (1...𝐽)) |
157 | 156, 36 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘))) ∧ (𝑘 + 1) ∈ 𝐶) → 𝑘 ∈ (0...𝐽)) |
158 | 129 | imdistani 568 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘))) → (𝜑 ∧ (𝑘 + 1) ∈ (1...𝐽))) |
159 | 42 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑘 + 1) ∈ (1...𝐽)) → 𝐶 ∈ 𝑂) |
160 | | elfznn 13214 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 + 1) ∈ (1...𝐽) → (𝑘 + 1) ∈ ℕ) |
161 | 160 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑘 + 1) ∈ (1...𝐽)) → (𝑘 + 1) ∈ ℕ) |
162 | 37, 38, 39, 40, 41, 159, 161 | ballotlemfp1 32358 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑘 + 1) ∈ (1...𝐽)) → ((¬ (𝑘 + 1) ∈ 𝐶 → ((𝐹‘𝐶)‘(𝑘 + 1)) = (((𝐹‘𝐶)‘((𝑘 + 1) − 1)) − 1)) ∧ ((𝑘 + 1) ∈ 𝐶 → ((𝐹‘𝐶)‘(𝑘 + 1)) = (((𝐹‘𝐶)‘((𝑘 + 1) − 1)) + 1)))) |
163 | 162 | simprd 495 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑘 + 1) ∈ (1...𝐽)) → ((𝑘 + 1) ∈ 𝐶 → ((𝐹‘𝐶)‘(𝑘 + 1)) = (((𝐹‘𝐶)‘((𝑘 + 1) − 1)) + 1))) |
164 | 163 | imp 406 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑘 + 1) ∈ (1...𝐽)) ∧ (𝑘 + 1) ∈ 𝐶) → ((𝐹‘𝐶)‘(𝑘 + 1)) = (((𝐹‘𝐶)‘((𝑘 + 1) − 1)) + 1)) |
165 | 158, 164 | sylan 579 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘))) ∧ (𝑘 + 1) ∈ 𝐶) → ((𝐹‘𝐶)‘(𝑘 + 1)) = (((𝐹‘𝐶)‘((𝑘 + 1) − 1)) + 1)) |
166 | | elfzelz 13185 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ (1...𝐽) → 𝑘 ∈ ℤ) |
167 | 166 | zcnd 12356 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ (1...𝐽) → 𝑘 ∈ ℂ) |
168 | | 1cnd 10901 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ (1...𝐽) → 1 ∈ ℂ) |
169 | 167, 168 | pncand 11263 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ (1...𝐽) → ((𝑘 + 1) − 1) = 𝑘) |
170 | 169 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ (1...𝐽) → ((𝐹‘𝐶)‘((𝑘 + 1) − 1)) = ((𝐹‘𝐶)‘𝑘)) |
171 | 170 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (1...𝐽) → (((𝐹‘𝐶)‘((𝑘 + 1) − 1)) + 1) = (((𝐹‘𝐶)‘𝑘) + 1)) |
172 | 171 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (1...𝐽) → (((𝐹‘𝐶)‘(𝑘 + 1)) = (((𝐹‘𝐶)‘((𝑘 + 1) − 1)) + 1) ↔ ((𝐹‘𝐶)‘(𝑘 + 1)) = (((𝐹‘𝐶)‘𝑘) + 1))) |
173 | 156, 172 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘))) ∧ (𝑘 + 1) ∈ 𝐶) → (((𝐹‘𝐶)‘(𝑘 + 1)) = (((𝐹‘𝐶)‘((𝑘 + 1) − 1)) + 1) ↔ ((𝐹‘𝐶)‘(𝑘 + 1)) = (((𝐹‘𝐶)‘𝑘) + 1))) |
174 | 165, 173 | mpbid 231 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘))) ∧ (𝑘 + 1) ∈ 𝐶) → ((𝐹‘𝐶)‘(𝑘 + 1)) = (((𝐹‘𝐶)‘𝑘) + 1)) |
175 | | 0z 12260 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 ∈
ℤ |
176 | | zleltp1 12301 |
. . . . . . . . . . . . . . . . . 18
⊢ ((0
∈ ℤ ∧ ((𝐹‘𝐶)‘𝑘) ∈ ℤ) → (0 ≤ ((𝐹‘𝐶)‘𝑘) ↔ 0 < (((𝐹‘𝐶)‘𝑘) + 1))) |
177 | 175, 46, 176 | sylancr 586 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (0 ≤ ((𝐹‘𝐶)‘𝑘) ↔ 0 < (((𝐹‘𝐶)‘𝑘) + 1))) |
178 | 177 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ ((𝐹‘𝐶)‘(𝑘 + 1)) = (((𝐹‘𝐶)‘𝑘) + 1)) → (0 ≤ ((𝐹‘𝐶)‘𝑘) ↔ 0 < (((𝐹‘𝐶)‘𝑘) + 1))) |
179 | | breq2 5074 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹‘𝐶)‘(𝑘 + 1)) = (((𝐹‘𝐶)‘𝑘) + 1) → (0 < ((𝐹‘𝐶)‘(𝑘 + 1)) ↔ 0 < (((𝐹‘𝐶)‘𝑘) + 1))) |
180 | 179 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ ((𝐹‘𝐶)‘(𝑘 + 1)) = (((𝐹‘𝐶)‘𝑘) + 1)) → (0 < ((𝐹‘𝐶)‘(𝑘 + 1)) ↔ 0 < (((𝐹‘𝐶)‘𝑘) + 1))) |
181 | 178, 180 | bitr4d 281 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ ((𝐹‘𝐶)‘(𝑘 + 1)) = (((𝐹‘𝐶)‘𝑘) + 1)) → (0 ≤ ((𝐹‘𝐶)‘𝑘) ↔ 0 < ((𝐹‘𝐶)‘(𝑘 + 1)))) |
182 | 145, 157,
174, 181 | syl21anc 834 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘))) ∧ (𝑘 + 1) ∈ 𝐶) → (0 ≤ ((𝐹‘𝐶)‘𝑘) ↔ 0 < ((𝐹‘𝐶)‘(𝑘 + 1)))) |
183 | 155, 182 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘))) ∧ (𝑘 + 1) ∈ 𝐶) → 0 < ((𝐹‘𝐶)‘(𝑘 + 1))) |
184 | 144, 154,
183 | ltled 11053 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘))) ∧ (𝑘 + 1) ∈ 𝐶) → 0 ≤ ((𝐹‘𝐶)‘(𝑘 + 1))) |
185 | 184 | adantlrr 717 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘)) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)}𝑗 ≤ 𝑘)) ∧ (𝑘 + 1) ∈ 𝐶) → 0 ≤ ((𝐹‘𝐶)‘(𝑘 + 1))) |
186 | 142, 143,
185, 137 | syl12anc 833 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘)) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)}𝑗 ≤ 𝑘)) ∧ (𝑘 + 1) ∈ 𝐶) → (𝑘 + 1) ≤ 𝑘) |
187 | 18, 186 | mtand 812 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘)) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)}𝑗 ≤ 𝑘)) → ¬ (𝑘 + 1) ∈ 𝐶) |
188 | 162 | simpld 494 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 + 1) ∈ (1...𝐽)) → (¬ (𝑘 + 1) ∈ 𝐶 → ((𝐹‘𝐶)‘(𝑘 + 1)) = (((𝐹‘𝐶)‘((𝑘 + 1) − 1)) −
1))) |
189 | 188 | imp 406 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑘 + 1) ∈ (1...𝐽)) ∧ ¬ (𝑘 + 1) ∈ 𝐶) → ((𝐹‘𝐶)‘(𝑘 + 1)) = (((𝐹‘𝐶)‘((𝑘 + 1) − 1)) −
1)) |
190 | 158, 189 | sylan 579 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘))) ∧ ¬ (𝑘 + 1) ∈ 𝐶) → ((𝐹‘𝐶)‘(𝑘 + 1)) = (((𝐹‘𝐶)‘((𝑘 + 1) − 1)) −
1)) |
191 | 5 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘))) ∧ ¬ (𝑘 + 1) ∈ 𝐶) → 𝑘 ∈ (1...𝐽)) |
192 | 170 | oveq1d 7270 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (1...𝐽) → (((𝐹‘𝐶)‘((𝑘 + 1) − 1)) − 1) = (((𝐹‘𝐶)‘𝑘) − 1)) |
193 | 192 | eqeq2d 2749 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (1...𝐽) → (((𝐹‘𝐶)‘(𝑘 + 1)) = (((𝐹‘𝐶)‘((𝑘 + 1) − 1)) − 1) ↔ ((𝐹‘𝐶)‘(𝑘 + 1)) = (((𝐹‘𝐶)‘𝑘) − 1))) |
194 | 191, 193 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘))) ∧ ¬ (𝑘 + 1) ∈ 𝐶) → (((𝐹‘𝐶)‘(𝑘 + 1)) = (((𝐹‘𝐶)‘((𝑘 + 1) − 1)) − 1) ↔ ((𝐹‘𝐶)‘(𝑘 + 1)) = (((𝐹‘𝐶)‘𝑘) − 1))) |
195 | 190, 194 | mpbid 231 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘))) ∧ ¬ (𝑘 + 1) ∈ 𝐶) → ((𝐹‘𝐶)‘(𝑘 + 1)) = (((𝐹‘𝐶)‘𝑘) − 1)) |
196 | 195 | adantlrr 717 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘)) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)}𝑗 ≤ 𝑘)) ∧ ¬ (𝑘 + 1) ∈ 𝐶) → ((𝐹‘𝐶)‘(𝑘 + 1)) = (((𝐹‘𝐶)‘𝑘) − 1)) |
197 | 187, 196 | mpdan 683 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘)) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)}𝑗 ≤ 𝑘)) → ((𝐹‘𝐶)‘(𝑘 + 1)) = (((𝐹‘𝐶)‘𝑘) − 1)) |
198 | | breq2 5074 |
. . . . . . . . 9
⊢ (((𝐹‘𝐶)‘(𝑘 + 1)) = (((𝐹‘𝐶)‘𝑘) − 1) → (0 ≤ ((𝐹‘𝐶)‘(𝑘 + 1)) ↔ 0 ≤ (((𝐹‘𝐶)‘𝑘) − 1))) |
199 | 198 | notbid 317 |
. . . . . . . 8
⊢ (((𝐹‘𝐶)‘(𝑘 + 1)) = (((𝐹‘𝐶)‘𝑘) − 1) → (¬ 0 ≤ ((𝐹‘𝐶)‘(𝑘 + 1)) ↔ ¬ 0 ≤ (((𝐹‘𝐶)‘𝑘) − 1))) |
200 | 197, 199 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘)) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)}𝑗 ≤ 𝑘)) → (¬ 0 ≤ ((𝐹‘𝐶)‘(𝑘 + 1)) ↔ ¬ 0 ≤ (((𝐹‘𝐶)‘𝑘) − 1))) |
201 | 141, 200 | mpbid 231 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘)) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)}𝑗 ≤ 𝑘)) → ¬ 0 ≤ (((𝐹‘𝐶)‘𝑘) − 1)) |
202 | 5, 36 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘))) → 𝑘 ∈ (0...𝐽)) |
203 | 202, 46 | syldan 590 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘))) → ((𝐹‘𝐶)‘𝑘) ∈ ℤ) |
204 | 203 | adantrr 713 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘)) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)}𝑗 ≤ 𝑘)) → ((𝐹‘𝐶)‘𝑘) ∈ ℤ) |
205 | | zlem1lt 12302 |
. . . . . . . . 9
⊢ ((((𝐹‘𝐶)‘𝑘) ∈ ℤ ∧ 0 ∈ ℤ)
→ (((𝐹‘𝐶)‘𝑘) ≤ 0 ↔ (((𝐹‘𝐶)‘𝑘) − 1) < 0)) |
206 | 175, 205 | mpan2 687 |
. . . . . . . 8
⊢ (((𝐹‘𝐶)‘𝑘) ∈ ℤ → (((𝐹‘𝐶)‘𝑘) ≤ 0 ↔ (((𝐹‘𝐶)‘𝑘) − 1) < 0)) |
207 | | zre 12253 |
. . . . . . . . . 10
⊢ (((𝐹‘𝐶)‘𝑘) ∈ ℤ → ((𝐹‘𝐶)‘𝑘) ∈ ℝ) |
208 | | 1red 10907 |
. . . . . . . . . 10
⊢ (((𝐹‘𝐶)‘𝑘) ∈ ℤ → 1 ∈
ℝ) |
209 | 207, 208 | resubcld 11333 |
. . . . . . . . 9
⊢ (((𝐹‘𝐶)‘𝑘) ∈ ℤ → (((𝐹‘𝐶)‘𝑘) − 1) ∈ ℝ) |
210 | | 0red 10909 |
. . . . . . . . 9
⊢ (((𝐹‘𝐶)‘𝑘) ∈ ℤ → 0 ∈
ℝ) |
211 | 209, 210 | ltnled 11052 |
. . . . . . . 8
⊢ (((𝐹‘𝐶)‘𝑘) ∈ ℤ → ((((𝐹‘𝐶)‘𝑘) − 1) < 0 ↔ ¬ 0 ≤
(((𝐹‘𝐶)‘𝑘) − 1))) |
212 | 206, 211 | bitrd 278 |
. . . . . . 7
⊢ (((𝐹‘𝐶)‘𝑘) ∈ ℤ → (((𝐹‘𝐶)‘𝑘) ≤ 0 ↔ ¬ 0 ≤ (((𝐹‘𝐶)‘𝑘) − 1))) |
213 | 204, 212 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘)) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)}𝑗 ≤ 𝑘)) → (((𝐹‘𝐶)‘𝑘) ≤ 0 ↔ ¬ 0 ≤ (((𝐹‘𝐶)‘𝑘) − 1))) |
214 | 201, 213 | mpbird 256 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘)) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)}𝑗 ≤ 𝑘)) → ((𝐹‘𝐶)‘𝑘) ≤ 0) |
215 | | simprlr 776 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘)) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)}𝑗 ≤ 𝑘)) → 0 ≤ ((𝐹‘𝐶)‘𝑘)) |
216 | 204 | zred 12355 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘)) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)}𝑗 ≤ 𝑘)) → ((𝐹‘𝐶)‘𝑘) ∈ ℝ) |
217 | | 0red 10909 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘)) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)}𝑗 ≤ 𝑘)) → 0 ∈ ℝ) |
218 | 216, 217 | letri3d 11047 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘)) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)}𝑗 ≤ 𝑘)) → (((𝐹‘𝐶)‘𝑘) = 0 ↔ (((𝐹‘𝐶)‘𝑘) ≤ 0 ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘)))) |
219 | 214, 215,
218 | mpbir2and 709 |
. . . 4
⊢ ((𝜑 ∧ ((𝑘 ∈ (1...𝐽) ∧ 0 ≤ ((𝐹‘𝐶)‘𝑘)) ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)}𝑗 ≤ 𝑘)) → ((𝐹‘𝐶)‘𝑘) = 0) |
220 | 4, 219 | sylan2b 593 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)} ∧ ∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)}𝑗 ≤ 𝑘)) → ((𝐹‘𝐶)‘𝑘) = 0) |
221 | | ssrab2 4009 |
. . . . . 6
⊢ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)} ⊆ (1...𝐽) |
222 | 221, 11 | sstri 3926 |
. . . . 5
⊢ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)} ⊆ ℝ |
223 | 222 | a1i 11 |
. . . 4
⊢ (𝜑 → {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)} ⊆ ℝ) |
224 | | fzfi 13620 |
. . . . . 6
⊢
(1...𝐽) ∈
Fin |
225 | | ssfi 8918 |
. . . . . 6
⊢
(((1...𝐽) ∈ Fin
∧ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)} ⊆ (1...𝐽)) → {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)} ∈ Fin) |
226 | 224, 221,
225 | mp2an 688 |
. . . . 5
⊢ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)} ∈ Fin |
227 | 226 | a1i 11 |
. . . 4
⊢ (𝜑 → {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)} ∈ Fin) |
228 | | rabn0 4316 |
. . . . 5
⊢ ({𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)} ≠ ∅ ↔ ∃𝑖 ∈ (1...𝐽)0 ≤ ((𝐹‘𝐶)‘𝑖)) |
229 | 59, 228 | sylibr 233 |
. . . 4
⊢ (𝜑 → {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)} ≠ ∅) |
230 | | fimaxre 11849 |
. . . 4
⊢ (({𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)} ⊆ ℝ ∧ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)} ∈ Fin ∧ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)} ≠ ∅) → ∃𝑘 ∈ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)}∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)}𝑗 ≤ 𝑘) |
231 | 223, 227,
229, 230 | syl3anc 1369 |
. . 3
⊢ (𝜑 → ∃𝑘 ∈ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)}∀𝑗 ∈ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)}𝑗 ≤ 𝑘) |
232 | 220, 231 | reximddv 3203 |
. 2
⊢ (𝜑 → ∃𝑘 ∈ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)} ((𝐹‘𝐶)‘𝑘) = 0) |
233 | | elrabi 3611 |
. . . 4
⊢ (𝑘 ∈ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)} → 𝑘 ∈ (1...𝐽)) |
234 | 233 | anim1i 614 |
. . 3
⊢ ((𝑘 ∈ {𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)} ∧ ((𝐹‘𝐶)‘𝑘) = 0) → (𝑘 ∈ (1...𝐽) ∧ ((𝐹‘𝐶)‘𝑘) = 0)) |
235 | 234 | reximi2 3171 |
. 2
⊢
(∃𝑘 ∈
{𝑖 ∈ (1...𝐽) ∣ 0 ≤ ((𝐹‘𝐶)‘𝑖)} ((𝐹‘𝐶)‘𝑘) = 0 → ∃𝑘 ∈ (1...𝐽)((𝐹‘𝐶)‘𝑘) = 0) |
236 | 232, 235 | syl 17 |
1
⊢ (𝜑 → ∃𝑘 ∈ (1...𝐽)((𝐹‘𝐶)‘𝑘) = 0) |