MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raleqtrdv Structured version   Visualization version   GIF version

Theorem raleqtrdv 3296
Description: Substitution of equal classes into a restricted universal quantifier. (Contributed by Matthew House, 21-Jul-2025.)
Hypotheses
Ref Expression
raleqtrdv.1 (𝜑 → ∀𝑥𝐴 𝜓)
raleqtrdv.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
raleqtrdv (𝜑 → ∀𝑥𝐵 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem raleqtrdv
StepHypRef Expression
1 raleqtrdv.1 . 2 (𝜑 → ∀𝑥𝐴 𝜓)
2 raleqtrdv.2 . . 3 (𝜑𝐴 = 𝐵)
32raleqdv 3294 . 2 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜓))
41, 3mpbid 232 1 (𝜑 → ∀𝑥𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wral 3049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-cleq 2725  df-ral 3050  df-rex 3059
This theorem is referenced by:  subgpgp  19519  znf1o  21498  perfopn  23110  ordtt1  23304  tx1stc  23575  xkococnlem  23584  dgrlem  26171  dchrisum0flb  27458  wlknewwlksn  29876  sigaclcu3  34146  subfacp1lem3  35237  poimirlem1  37671
  Copyright terms: Public domain W3C validator