MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raleqtrdv Structured version   Visualization version   GIF version

Theorem raleqtrdv 3303
Description: Substitution of equal classes into a restricted universal quantifier. (Contributed by Matthew House, 21-Jul-2025.)
Hypotheses
Ref Expression
raleqtrdv.1 (𝜑 → ∀𝑥𝐴 𝜓)
raleqtrdv.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
raleqtrdv (𝜑 → ∀𝑥𝐵 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem raleqtrdv
StepHypRef Expression
1 raleqtrdv.1 . 2 (𝜑 → ∀𝑥𝐴 𝜓)
2 raleqtrdv.2 . . 3 (𝜑𝐴 = 𝐵)
32raleqdv 3301 . 2 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜓))
41, 3mpbid 232 1 (𝜑 → ∀𝑥𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wral 3045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2722  df-ral 3046  df-rex 3055
This theorem is referenced by:  subgpgp  19534  znf1o  21468  perfopn  23079  ordtt1  23273  tx1stc  23544  xkococnlem  23553  dgrlem  26141  dchrisum0flb  27428  wlknewwlksn  29824  sigaclcu3  34119  subfacp1lem3  35176  poimirlem1  37622
  Copyright terms: Public domain W3C validator