![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > raleqtrdv | Structured version Visualization version GIF version |
Description: Substitution of equal classes into a restricted universal quantifier. (Contributed by Matthew House, 21-Jul-2025.) |
Ref | Expression |
---|---|
raleqtrdv.1 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
raleqtrdv.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
raleqtrdv | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqtrdv.1 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | |
2 | raleqtrdv.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | raleqdv 3334 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
4 | 1, 3 | mpbid 232 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ral 3068 df-rex 3077 |
This theorem is referenced by: subgpgp 19639 znf1o 21593 perfopn 23214 ordtt1 23408 tx1stc 23679 xkococnlem 23688 dgrlem 26288 dchrisum0flb 27572 wlknewwlksn 29920 sigaclcu3 34086 subfacp1lem3 35150 poimirlem1 37581 |
Copyright terms: Public domain | W3C validator |