MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reximiaOLD Structured version   Visualization version   GIF version

Theorem reximiaOLD 3177
Description: Obsolete version of reximia 3176 as of 31-Oct-2024. (Contributed by NM, 10-Feb-1997.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
reximia.1 (𝑥𝐴 → (𝜑𝜓))
Assertion
Ref Expression
reximiaOLD (∃𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓)

Proof of Theorem reximiaOLD
StepHypRef Expression
1 rexim 3172 . 2 (∀𝑥𝐴 (𝜑𝜓) → (∃𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓))
2 reximia.1 . 2 (𝑥𝐴 → (𝜑𝜓))
31, 2mprg 3078 1 (∃𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wrex 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-ral 3069  df-rex 3070
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator