| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximia | Structured version Visualization version GIF version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Wolf Lammen, 31-Oct-2024.) |
| Ref | Expression |
|---|---|
| ralimia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| reximia | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
| 2 | 1 | imdistani 568 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜓)) |
| 3 | 2 | reximi2 3062 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: reximi 3067 iunpw 7747 tz7.49c 8414 fisup2g 9420 fiinf2g 9453 unwdomg 9537 trcl 9681 cfsmolem 10223 1idpr 10982 qmulz 12910 xrsupexmnf 13265 xrinfmexpnf 13266 caubnd2 15324 caurcvg 15643 caurcvg2 15644 caucvg 15645 sgrpidmnd 18666 txlm 23535 znegscl 28280 zs12negscl 28340 norm1exi 31179 chrelat2i 32294 xrofsup 32690 esumcvg 34076 bnj168 34720 satfv1 35350 satfv0fvfmla0 35400 poimirlem30 37644 ismblfin 37655 dffltz 42622 allbutfi 45389 sge0ltfirpmpt 46406 ovolval5lem3 46652 2reu8i 47114 nnsum4primes4 47790 nnsum4primesprm 47792 nnsum4primesgbe 47794 nnsum4primesle9 47796 0aryfvalelfv 48624 |
| Copyright terms: Public domain | W3C validator |