| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximia | Structured version Visualization version GIF version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Wolf Lammen, 31-Oct-2024.) |
| Ref | Expression |
|---|---|
| ralimia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| reximia | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
| 2 | 1 | imdistani 568 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜓)) |
| 3 | 2 | reximi2 3066 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ∃wrex 3057 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-rex 3058 |
| This theorem is referenced by: reximi 3071 iunpw 7710 tz7.49c 8371 fisup2g 9360 fiinf2g 9393 unwdomg 9477 trcl 9625 cfsmolem 10168 1idpr 10927 qmulz 12851 xrsupexmnf 13206 xrinfmexpnf 13207 caubnd2 15267 caurcvg 15586 caurcvg2 15587 caucvg 15588 sgrpidmnd 18649 txlm 23564 znegscl 28317 zs12negscl 28389 norm1exi 31232 chrelat2i 32347 xrofsup 32754 esumcvg 34120 bnj168 34763 satfv1 35428 satfv0fvfmla0 35478 poimirlem30 37710 ismblfin 37721 dffltz 42752 allbutfi 45515 sge0ltfirpmpt 46530 ovolval5lem3 46776 2reu8i 47237 nnsum4primes4 47913 nnsum4primesprm 47915 nnsum4primesgbe 47917 nnsum4primesle9 47919 0aryfvalelfv 48760 |
| Copyright terms: Public domain | W3C validator |