MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reximia Structured version   Visualization version   GIF version

Theorem reximia 3068
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Wolf Lammen, 31-Oct-2024.)
Hypothesis
Ref Expression
ralimia.1 (𝑥𝐴 → (𝜑𝜓))
Assertion
Ref Expression
reximia (∃𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓)

Proof of Theorem reximia
StepHypRef Expression
1 ralimia.1 . . 3 (𝑥𝐴 → (𝜑𝜓))
21imdistani 568 . 2 ((𝑥𝐴𝜑) → (𝑥𝐴𝜓))
32reximi2 3066 1 (∃𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  wrex 3057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-rex 3058
This theorem is referenced by:  reximi  3071  iunpw  7710  tz7.49c  8371  fisup2g  9360  fiinf2g  9393  unwdomg  9477  trcl  9625  cfsmolem  10168  1idpr  10927  qmulz  12851  xrsupexmnf  13206  xrinfmexpnf  13207  caubnd2  15267  caurcvg  15586  caurcvg2  15587  caucvg  15588  sgrpidmnd  18649  txlm  23564  znegscl  28317  zs12negscl  28389  norm1exi  31232  chrelat2i  32347  xrofsup  32754  esumcvg  34120  bnj168  34763  satfv1  35428  satfv0fvfmla0  35478  poimirlem30  37710  ismblfin  37721  dffltz  42752  allbutfi  45515  sge0ltfirpmpt  46530  ovolval5lem3  46776  2reu8i  47237  nnsum4primes4  47913  nnsum4primesprm  47915  nnsum4primesgbe  47917  nnsum4primesle9  47919  0aryfvalelfv  48760
  Copyright terms: Public domain W3C validator