![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reximia | Structured version Visualization version GIF version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Wolf Lammen, 31-Oct-2024.) |
Ref | Expression |
---|---|
ralimia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
reximia | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
2 | 1 | imdistani 569 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜓)) |
3 | 2 | reximi2 3079 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∃wrex 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-rex 3071 |
This theorem is referenced by: reximi 3084 iunpw 7760 wfrdmclOLD 8319 tz7.49c 8448 fisup2g 9465 fiinf2g 9497 unwdomg 9581 trcl 9725 cfsmolem 10267 1idpr 11026 qmulz 12939 xrsupexmnf 13288 xrinfmexpnf 13289 caubnd2 15308 caurcvg 15627 caurcvg2 15628 caucvg 15629 sgrpidmnd 18664 txlm 23372 norm1exi 30758 chrelat2i 31873 xrofsup 32235 esumcvg 33370 bnj168 34027 satfv1 34640 satfv0fvfmla0 34690 poimirlem30 36821 ismblfin 36832 dffltz 41678 allbutfi 44402 sge0ltfirpmpt 45423 ovolval5lem3 45669 2reu8i 46120 nnsum4primes4 46756 nnsum4primesprm 46758 nnsum4primesgbe 46760 nnsum4primesle9 46762 0aryfvalelfv 47409 |
Copyright terms: Public domain | W3C validator |