| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximia | Structured version Visualization version GIF version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Wolf Lammen, 31-Oct-2024.) |
| Ref | Expression |
|---|---|
| ralimia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| reximia | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
| 2 | 1 | imdistani 568 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜓)) |
| 3 | 2 | reximi2 3069 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ∃wrex 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3061 |
| This theorem is referenced by: reximi 3074 iunpw 7765 wfrdmclOLD 8331 tz7.49c 8460 fisup2g 9481 fiinf2g 9514 unwdomg 9598 trcl 9742 cfsmolem 10284 1idpr 11043 qmulz 12967 xrsupexmnf 13321 xrinfmexpnf 13322 caubnd2 15376 caurcvg 15693 caurcvg2 15694 caucvg 15695 sgrpidmnd 18717 txlm 23586 znegscl 28332 zs12negscl 28392 norm1exi 31231 chrelat2i 32346 xrofsup 32744 esumcvg 34117 bnj168 34761 satfv1 35385 satfv0fvfmla0 35435 poimirlem30 37674 ismblfin 37685 dffltz 42657 allbutfi 45420 sge0ltfirpmpt 46437 ovolval5lem3 46683 2reu8i 47142 nnsum4primes4 47803 nnsum4primesprm 47805 nnsum4primesgbe 47807 nnsum4primesle9 47809 0aryfvalelfv 48615 |
| Copyright terms: Public domain | W3C validator |