| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximia | Structured version Visualization version GIF version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Wolf Lammen, 31-Oct-2024.) |
| Ref | Expression |
|---|---|
| ralimia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| reximia | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
| 2 | 1 | imdistani 568 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜓)) |
| 3 | 2 | reximi2 3063 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃wrex 3054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3055 |
| This theorem is referenced by: reximi 3068 iunpw 7750 tz7.49c 8417 fisup2g 9427 fiinf2g 9460 unwdomg 9544 trcl 9688 cfsmolem 10230 1idpr 10989 qmulz 12917 xrsupexmnf 13272 xrinfmexpnf 13273 caubnd2 15331 caurcvg 15650 caurcvg2 15651 caucvg 15652 sgrpidmnd 18673 txlm 23542 znegscl 28287 zs12negscl 28347 norm1exi 31186 chrelat2i 32301 xrofsup 32697 esumcvg 34083 bnj168 34727 satfv1 35357 satfv0fvfmla0 35407 poimirlem30 37651 ismblfin 37662 dffltz 42629 allbutfi 45396 sge0ltfirpmpt 46413 ovolval5lem3 46659 2reu8i 47118 nnsum4primes4 47794 nnsum4primesprm 47796 nnsum4primesgbe 47798 nnsum4primesle9 47800 0aryfvalelfv 48628 |
| Copyright terms: Public domain | W3C validator |