| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximia | Structured version Visualization version GIF version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Wolf Lammen, 31-Oct-2024.) |
| Ref | Expression |
|---|---|
| ralimia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| reximia | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
| 2 | 1 | imdistani 568 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜓)) |
| 3 | 2 | reximi2 3065 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-rex 3057 |
| This theorem is referenced by: reximi 3070 iunpw 7704 tz7.49c 8365 fisup2g 9353 fiinf2g 9386 unwdomg 9470 trcl 9618 cfsmolem 10158 1idpr 10917 qmulz 12846 xrsupexmnf 13201 xrinfmexpnf 13202 caubnd2 15262 caurcvg 15581 caurcvg2 15582 caucvg 15583 sgrpidmnd 18644 txlm 23561 znegscl 28314 zs12negscl 28386 norm1exi 31225 chrelat2i 32340 xrofsup 32745 esumcvg 34094 bnj168 34737 satfv1 35395 satfv0fvfmla0 35445 poimirlem30 37689 ismblfin 37700 dffltz 42666 allbutfi 45430 sge0ltfirpmpt 46445 ovolval5lem3 46691 2reu8i 47143 nnsum4primes4 47819 nnsum4primesprm 47821 nnsum4primesgbe 47823 nnsum4primesle9 47825 0aryfvalelfv 48666 |
| Copyright terms: Public domain | W3C validator |