![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reximia | Structured version Visualization version GIF version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Wolf Lammen, 31-Oct-2024.) |
Ref | Expression |
---|---|
ralimia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
reximia | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
2 | 1 | imdistani 568 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜓)) |
3 | 2 | reximi2 3085 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-rex 3077 |
This theorem is referenced by: reximi 3090 iunpw 7806 wfrdmclOLD 8373 tz7.49c 8502 fisup2g 9537 fiinf2g 9569 unwdomg 9653 trcl 9797 cfsmolem 10339 1idpr 11098 qmulz 13016 xrsupexmnf 13367 xrinfmexpnf 13368 caubnd2 15406 caurcvg 15725 caurcvg2 15726 caucvg 15727 sgrpidmnd 18777 txlm 23677 znegscl 28396 norm1exi 31282 chrelat2i 32397 xrofsup 32774 esumcvg 34050 bnj168 34706 satfv1 35331 satfv0fvfmla0 35381 poimirlem30 37610 ismblfin 37621 dffltz 42589 allbutfi 45308 sge0ltfirpmpt 46329 ovolval5lem3 46575 2reu8i 47028 nnsum4primes4 47663 nnsum4primesprm 47665 nnsum4primesgbe 47667 nnsum4primesle9 47669 0aryfvalelfv 48369 |
Copyright terms: Public domain | W3C validator |