Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reximia | Structured version Visualization version GIF version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Wolf Lammen, 31-Oct-2024.) |
Ref | Expression |
---|---|
ralimia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
reximia | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
2 | 1 | imdistani 570 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜓)) |
3 | 2 | reximi2 3079 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 ∃wrex 3071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1780 df-rex 3072 |
This theorem is referenced by: reximi 3084 iunpw 7653 wfrdmclOLD 8179 tz7.49c 8308 fisup2g 9271 fiinf2g 9303 unwdomg 9387 trcl 9530 cfsmolem 10072 1idpr 10831 qmulz 12737 xrsupexmnf 13085 xrinfmexpnf 13086 caubnd2 15114 caurcvg 15433 caurcvg2 15434 caucvg 15435 sgrpidmnd 18435 txlm 22844 norm1exi 29657 chrelat2i 30772 xrofsup 31135 esumcvg 32099 bnj168 32754 satfv1 33370 satfv0fvfmla0 33420 poimirlem30 35851 ismblfin 35862 dffltz 40508 allbutfi 42981 sge0ltfirpmpt 43996 ovolval5lem3 44242 2reu8i 44663 nnsum4primes4 45299 nnsum4primesprm 45301 nnsum4primesgbe 45303 nnsum4primesle9 45305 0aryfvalelfv 46039 |
Copyright terms: Public domain | W3C validator |