![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reximia | Structured version Visualization version GIF version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Wolf Lammen, 31-Oct-2024.) |
Ref | Expression |
---|---|
ralimia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
reximia | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
2 | 1 | imdistani 568 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜓)) |
3 | 2 | reximi2 3076 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ∃wrex 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-rex 3068 |
This theorem is referenced by: reximi 3081 iunpw 7789 wfrdmclOLD 8355 tz7.49c 8484 fisup2g 9505 fiinf2g 9537 unwdomg 9621 trcl 9765 cfsmolem 10307 1idpr 11066 qmulz 12990 xrsupexmnf 13343 xrinfmexpnf 13344 caubnd2 15392 caurcvg 15709 caurcvg2 15710 caucvg 15711 sgrpidmnd 18764 txlm 23671 znegscl 28392 norm1exi 31278 chrelat2i 32393 xrofsup 32777 esumcvg 34066 bnj168 34722 satfv1 35347 satfv0fvfmla0 35397 poimirlem30 37636 ismblfin 37647 dffltz 42620 allbutfi 45342 sge0ltfirpmpt 46363 ovolval5lem3 46609 2reu8i 47062 nnsum4primes4 47713 nnsum4primesprm 47715 nnsum4primesgbe 47717 nnsum4primesle9 47719 0aryfvalelfv 48484 |
Copyright terms: Public domain | W3C validator |