| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximia | Structured version Visualization version GIF version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Wolf Lammen, 31-Oct-2024.) |
| Ref | Expression |
|---|---|
| ralimia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| reximia | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
| 2 | 1 | imdistani 568 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜓)) |
| 3 | 2 | reximi2 3069 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ∃wrex 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3061 |
| This theorem is referenced by: reximi 3074 iunpw 7763 wfrdmclOLD 8329 tz7.49c 8458 fisup2g 9479 fiinf2g 9512 unwdomg 9596 trcl 9740 cfsmolem 10282 1idpr 11041 qmulz 12965 xrsupexmnf 13319 xrinfmexpnf 13320 caubnd2 15374 caurcvg 15691 caurcvg2 15692 caucvg 15693 sgrpidmnd 18715 txlm 23584 znegscl 28295 norm1exi 31177 chrelat2i 32292 xrofsup 32690 esumcvg 34063 bnj168 34707 satfv1 35331 satfv0fvfmla0 35381 poimirlem30 37620 ismblfin 37631 dffltz 42604 allbutfi 45368 sge0ltfirpmpt 46385 ovolval5lem3 46631 2reu8i 47090 nnsum4primes4 47751 nnsum4primesprm 47753 nnsum4primesgbe 47755 nnsum4primesle9 47757 0aryfvalelfv 48563 |
| Copyright terms: Public domain | W3C validator |