Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reximia | Structured version Visualization version GIF version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Wolf Lammen, 31-Oct-2024.) |
Ref | Expression |
---|---|
ralimia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
reximia | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
2 | 1 | imdistani 569 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜓)) |
3 | 2 | reximi2 3078 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ∃wrex 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1781 df-rex 3071 |
This theorem is referenced by: reximi 3083 iunpw 7675 wfrdmclOLD 8210 tz7.49c 8339 fisup2g 9317 fiinf2g 9349 unwdomg 9433 trcl 9577 cfsmolem 10119 1idpr 10878 qmulz 12784 xrsupexmnf 13132 xrinfmexpnf 13133 caubnd2 15160 caurcvg 15479 caurcvg2 15480 caucvg 15481 sgrpidmnd 18479 txlm 22897 norm1exi 29841 chrelat2i 30956 xrofsup 31318 esumcvg 32293 bnj168 32950 satfv1 33565 satfv0fvfmla0 33615 poimirlem30 35905 ismblfin 35916 dffltz 40721 allbutfi 43257 sge0ltfirpmpt 44272 ovolval5lem3 44518 2reu8i 44945 nnsum4primes4 45581 nnsum4primesprm 45583 nnsum4primesgbe 45585 nnsum4primesle9 45587 0aryfvalelfv 46321 |
Copyright terms: Public domain | W3C validator |