| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximia | Structured version Visualization version GIF version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Wolf Lammen, 31-Oct-2024.) |
| Ref | Expression |
|---|---|
| ralimia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| reximia | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
| 2 | 1 | imdistani 568 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜓)) |
| 3 | 2 | reximi2 3062 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: reximi 3067 iunpw 7711 tz7.49c 8375 fisup2g 9378 fiinf2g 9411 unwdomg 9495 trcl 9643 cfsmolem 10183 1idpr 10942 qmulz 12870 xrsupexmnf 13225 xrinfmexpnf 13226 caubnd2 15283 caurcvg 15602 caurcvg2 15603 caucvg 15604 sgrpidmnd 18631 txlm 23551 znegscl 28303 zs12negscl 28373 norm1exi 31212 chrelat2i 32327 xrofsup 32723 esumcvg 34052 bnj168 34696 satfv1 35335 satfv0fvfmla0 35385 poimirlem30 37629 ismblfin 37640 dffltz 42607 allbutfi 45373 sge0ltfirpmpt 46390 ovolval5lem3 46636 2reu8i 47098 nnsum4primes4 47774 nnsum4primesprm 47776 nnsum4primesgbe 47778 nnsum4primesle9 47780 0aryfvalelfv 48621 |
| Copyright terms: Public domain | W3C validator |