Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reximia | Structured version Visualization version GIF version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Wolf Lammen, 31-Oct-2024.) |
Ref | Expression |
---|---|
reximia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
reximia | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
2 | 1 | imdistani 568 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜓)) |
3 | 2 | reximi2 3173 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2109 ∃wrex 3066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 df-rex 3071 |
This theorem is referenced by: reximi 3176 iunpw 7612 wfrdmclOLD 8132 tz7.49c 8261 fisup2g 9188 fiinf2g 9220 unwdomg 9304 trcl 9469 cfsmolem 10010 1idpr 10769 qmulz 12673 xrsupexmnf 13021 xrinfmexpnf 13022 caubnd2 15050 caurcvg 15369 caurcvg2 15370 caucvg 15371 sgrpidmnd 18371 txlm 22780 norm1exi 29591 chrelat2i 30706 xrofsup 31069 esumcvg 32033 bnj168 32688 satfv1 33304 satfv0fvfmla0 33354 poimirlem30 35786 ismblfin 35797 dffltz 40451 allbutfi 42887 sge0ltfirpmpt 43900 ovolval5lem3 44146 2reu8i 44556 nnsum4primes4 45193 nnsum4primesprm 45195 nnsum4primesgbe 45197 nnsum4primesle9 45199 0aryfvalelfv 45933 |
Copyright terms: Public domain | W3C validator |