| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralbii2 | Structured version Visualization version GIF version | ||
| Description: Inference adding different restricted universal quantifiers to each side of an equivalence. (Contributed by NM, 15-Aug-2005.) |
| Ref | Expression |
|---|---|
| ralbii2.1 | ⊢ ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐵 → 𝜓)) |
| Ref | Expression |
|---|---|
| ralbii2 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralbii2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐵 → 𝜓)) | |
| 2 | 1 | albii 1819 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜓)) |
| 3 | df-ral 3045 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 4 | df-ral 3045 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜓)) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ral 3045 |
| This theorem is referenced by: ralbiia 3073 ralcom3 3079 raleqbii 3308 ralrab 3656 raldifb 4102 ralin 4202 raldifsni 4749 reusv2 5345 dfsup2 9353 iscard2 9891 acnnum 9965 dfac9 10050 dfacacn 10055 raluz2 12816 ralrp 12933 isprm4 16613 isdomn2OLD 20615 sdrgacs 20704 isnrm2 23261 ismbl 25443 ellimc3 25796 dchrelbas2 27164 onsis 28195 h1dei 31512 iineq1i 36172 ixpeq1i 36176 fnwe2lem2 43027 |
| Copyright terms: Public domain | W3C validator |