| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralbii2 | Structured version Visualization version GIF version | ||
| Description: Inference adding different restricted universal quantifiers to each side of an equivalence. (Contributed by NM, 15-Aug-2005.) |
| Ref | Expression |
|---|---|
| ralbii2.1 | ⊢ ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐵 → 𝜓)) |
| Ref | Expression |
|---|---|
| ralbii2 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralbii2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐵 → 𝜓)) | |
| 2 | 1 | albii 1819 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜓)) |
| 3 | df-ral 3046 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 4 | df-ral 3046 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜓)) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∈ wcel 2109 ∀wral 3045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ral 3046 |
| This theorem is referenced by: ralbiia 3074 ralcom3 3080 raleqbii 3319 ralrab 3668 raldifb 4115 ralin 4215 raldifsni 4762 reusv2 5361 dfsup2 9402 iscard2 9936 acnnum 10012 dfac9 10097 dfacacn 10102 raluz2 12863 ralrp 12980 isprm4 16661 isdomn2OLD 20628 sdrgacs 20717 isnrm2 23252 ismbl 25434 ellimc3 25787 dchrelbas2 27155 onsis 28179 h1dei 31486 iineq1i 36191 ixpeq1i 36195 fnwe2lem2 43047 |
| Copyright terms: Public domain | W3C validator |