Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralbii2 | Structured version Visualization version GIF version |
Description: Inference adding different restricted universal quantifiers to each side of an equivalence. (Contributed by NM, 15-Aug-2005.) |
Ref | Expression |
---|---|
ralbii2.1 | ⊢ ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐵 → 𝜓)) |
Ref | Expression |
---|---|
ralbii2 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbii2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐵 → 𝜓)) | |
2 | 1 | albii 1825 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜓)) |
3 | df-ral 3070 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
4 | df-ral 3070 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜓)) | |
5 | 2, 3, 4 | 3bitr4i 302 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1539 ∈ wcel 2109 ∀wral 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 |
This theorem depends on definitions: df-bi 206 df-ral 3070 |
This theorem is referenced by: ralbiia 3091 raleqbii 3162 ralrab 3631 raldifb 4083 raldifsni 4733 reusv2 5329 dfsup2 9164 iscard2 9718 acnnum 9792 dfac9 9876 dfacacn 9881 raluz2 12619 ralrp 12732 isprm4 16370 sdrgacs 20050 isdomn2 20551 isnrm2 22490 ismbl 24671 ellimc3 25024 dchrelbas2 26366 h1dei 29891 fnwe2lem2 40856 |
Copyright terms: Public domain | W3C validator |