MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralbii2 Structured version   Visualization version   GIF version

Theorem ralbii2 3087
Description: Inference adding different restricted universal quantifiers to each side of an equivalence. (Contributed by NM, 15-Aug-2005.)
Hypothesis
Ref Expression
ralbii2.1 ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜓))
Assertion
Ref Expression
ralbii2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜓)

Proof of Theorem ralbii2
StepHypRef Expression
1 ralbii2.1 . . 3 ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜓))
21albii 1819 . 2 (∀𝑥(𝑥𝐴𝜑) ↔ ∀𝑥(𝑥𝐵𝜓))
3 df-ral 3060 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
4 df-ral 3060 . 2 (∀𝑥𝐵 𝜓 ↔ ∀𝑥(𝑥𝐵𝜓))
52, 3, 43bitr4i 302 1 (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wcel 2104  wral 3059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 206  df-ral 3060
This theorem is referenced by:  ralbiia  3089  ralcom3  3095  raleqbii  3336  ralrab  3688  raldifb  4143  raldifsni  4797  reusv2  5400  dfsup2  9441  iscard2  9973  acnnum  10049  dfac9  10133  dfacacn  10138  raluz2  12885  ralrp  12998  isprm4  16625  sdrgacs  20560  isdomn2  21115  isnrm2  23082  ismbl  25275  ellimc3  25628  dchrelbas2  26976  h1dei  31070  ralin  37418  fnwe2lem2  42095
  Copyright terms: Public domain W3C validator