MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralbii2 Structured version   Visualization version   GIF version

Theorem ralbii2 3089
Description: Inference adding different restricted universal quantifiers to each side of an equivalence. (Contributed by NM, 15-Aug-2005.)
Hypothesis
Ref Expression
ralbii2.1 ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜓))
Assertion
Ref Expression
ralbii2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜓)

Proof of Theorem ralbii2
StepHypRef Expression
1 ralbii2.1 . . 3 ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜓))
21albii 1819 . 2 (∀𝑥(𝑥𝐴𝜑) ↔ ∀𝑥(𝑥𝐵𝜓))
3 df-ral 3063 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
4 df-ral 3063 . 2 (∀𝑥𝐵 𝜓 ↔ ∀𝑥(𝑥𝐵𝜓))
52, 3, 43bitr4i 303 1 (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wcel 2104  wral 3062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 206  df-ral 3063
This theorem is referenced by:  ralbiia  3091  ralcom3  3097  raleqbii  3312  ralrab  3635  raldifb  4085  raldifsni  4734  reusv2  5335  dfsup2  9251  iscard2  9782  acnnum  9858  dfac9  9942  dfacacn  9947  raluz2  12687  ralrp  12800  isprm4  16438  sdrgacs  20118  isdomn2  20619  isnrm2  22558  ismbl  24739  ellimc3  25092  dchrelbas2  26434  h1dei  29961  ralin  36456  fnwe2lem2  41072
  Copyright terms: Public domain W3C validator