| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralbii2 | Structured version Visualization version GIF version | ||
| Description: Inference adding different restricted universal quantifiers to each side of an equivalence. (Contributed by NM, 15-Aug-2005.) |
| Ref | Expression |
|---|---|
| ralbii2.1 | ⊢ ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐵 → 𝜓)) |
| Ref | Expression |
|---|---|
| ralbii2 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralbii2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐵 → 𝜓)) | |
| 2 | 1 | albii 1819 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜓)) |
| 3 | df-ral 3052 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 4 | df-ral 3052 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜓)) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∈ wcel 2108 ∀wral 3051 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ral 3052 |
| This theorem is referenced by: ralbiia 3080 ralcom3 3086 raleqbii 3323 ralrab 3677 raldifb 4124 ralin 4224 raldifsni 4771 reusv2 5373 dfsup2 9454 iscard2 9988 acnnum 10064 dfac9 10149 dfacacn 10154 raluz2 12911 ralrp 13027 isprm4 16701 isdomn2OLD 20670 sdrgacs 20759 isnrm2 23294 ismbl 25477 ellimc3 25830 dchrelbas2 27198 h1dei 31477 iineq1i 36160 ixpeq1i 36164 fnwe2lem2 43022 |
| Copyright terms: Public domain | W3C validator |