| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralbii2 | Structured version Visualization version GIF version | ||
| Description: Inference adding different restricted universal quantifiers to each side of an equivalence. (Contributed by NM, 15-Aug-2005.) |
| Ref | Expression |
|---|---|
| ralbii2.1 | ⊢ ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐵 → 𝜓)) |
| Ref | Expression |
|---|---|
| ralbii2 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralbii2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐵 → 𝜓)) | |
| 2 | 1 | albii 1820 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜓)) |
| 3 | df-ral 3048 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 4 | df-ral 3048 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜓)) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 ∈ wcel 2111 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-ral 3048 |
| This theorem is referenced by: ralbiia 3076 ralcom3 3082 raleqbii 3310 ralrab 3653 raldifb 4099 ralin 4199 raldifsni 4747 reusv2 5341 dfsup2 9328 iscard2 9869 acnnum 9943 dfac9 10028 dfacacn 10033 raluz2 12795 ralrp 12912 isprm4 16595 isdomn2OLD 20628 sdrgacs 20717 isnrm2 23274 ismbl 25455 ellimc3 25808 dchrelbas2 27176 onsis 28209 h1dei 31528 iineq1i 36236 ixpeq1i 36240 fnwe2lem2 43090 |
| Copyright terms: Public domain | W3C validator |