Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mprg | Structured version Visualization version GIF version |
Description: Modus ponens combined with restricted generalization. (Contributed by NM, 10-Aug-2004.) |
Ref | Expression |
---|---|
mprg.1 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓) |
mprg.2 | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
Ref | Expression |
---|---|
mprg | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mprg.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝜑) | |
2 | 1 | rgen 3073 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
3 | mprg.1 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 |
This theorem depends on definitions: df-bi 206 df-ral 3068 |
This theorem is referenced by: reximiaOLD 3173 rmoimia 3671 reuxfrd 3678 2reurmo 3689 ralf0 4441 iuneq2i 4942 iineq2i 4943 dfiun2 4959 dfiin2 4960 eusv4 5324 dfiun3 5864 dfiin3 5865 relmptopab 7497 fsplitfpar 7930 ixpint 8671 noinfep 9348 tctr 9429 r1elssi 9494 ackbij2 9930 hsmexlem5 10117 axcc2lem 10123 inar1 10462 ccatalpha 14226 sumeq2i 15339 sum2id 15348 prodeq2i 15557 prod2id 15566 prdsbasex 17078 fnmrc 17233 sscpwex 17444 gsumwspan 18400 0frgp 19300 subdrgint 19986 frgpcyg 20693 psrbaglefi 21045 psrbaglefiOLD 21046 mvrf1 21104 mplmonmul 21147 elpt 22631 ptbasin2 22637 ptbasfi 22640 ptcld 22672 ptrescn 22698 xkoinjcn 22746 ptuncnv 22866 ptunhmeo 22867 itgfsum 24896 rolle 25059 dvlip 25062 dvivthlem1 25077 dvivth 25079 pserdv 25493 logtayl 25720 goeqi 30536 reuxfrdf 30740 sxbrsigalem0 32138 bnj852 32801 bnj1145 32873 cvmsss2 33136 cvmliftphtlem 33179 dfon2lem1 33665 dfon2lem3 33667 dfon2lem7 33671 ptrest 35703 mblfinlem2 35742 voliunnfl 35748 sdclem2 35827 dmmzp 40471 arearect 40962 areaquad 40963 trclrelexplem 41208 corcltrcl 41236 cotrclrcl 41239 clsk3nimkb 41539 lhe4.4ex1a 41836 dvcosax 43357 fourierdlem57 43594 fourierdlem58 43595 fourierdlem62 43599 nnsgrpnmnd 45260 elbigofrcl 45784 iunordi 46269 |
Copyright terms: Public domain | W3C validator |