| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mprg | Structured version Visualization version GIF version | ||
| Description: Modus ponens combined with restricted generalization. (Contributed by NM, 10-Aug-2004.) |
| Ref | Expression |
|---|---|
| mprg.1 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| mprg.2 | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
| Ref | Expression |
|---|---|
| mprg | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mprg.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝜑) | |
| 2 | 1 | rgen 3047 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
| 3 | mprg.1 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 |
| This theorem depends on definitions: df-bi 207 df-ral 3046 |
| This theorem is referenced by: rmoimia 3715 reuxfrd 3722 2reurmo 3733 rabxm 4356 ralf0 4480 iuneq2i 4980 iineq2i 4981 dfiun2 5000 dfiin2 5001 eusv4 5364 dfiun3 5936 dfiin3 5937 relmptopab 7642 fsplitfpar 8100 ixpint 8901 noinfep 9620 tctr 9700 r1elssi 9765 ackbij2 10202 hsmexlem5 10390 axcc2lem 10396 inar1 10735 ccatalpha 14565 sumeq2i 15671 sum2id 15681 prodeq2i 15891 prod2id 15901 prdsbasex 17420 fnmrc 17575 sscpwex 17784 gsumwspan 18780 0frgp 19716 subdrgint 20719 frgpcyg 21490 psrbaglefi 21842 mvrf1 21902 mplmonmul 21950 elpt 23466 ptbasin2 23472 ptbasfi 23475 ptcld 23507 ptrescn 23533 xkoinjcn 23581 ptuncnv 23701 ptunhmeo 23702 itgfsum 25735 rolle 25901 dvlip 25905 dvivthlem1 25920 dvivth 25922 pserdv 26346 logtayl 26576 goeqi 32209 reuxfrdf 32427 sxbrsigalem0 34269 bnj852 34918 bnj1145 34990 cvmsss2 35268 cvmliftphtlem 35311 dfon2lem1 35778 dfon2lem3 35780 dfon2lem7 35784 disjeq12i 36188 ptrest 37620 mblfinlem2 37659 voliunnfl 37665 sdclem2 37743 dmmzp 42728 arearect 43211 areaquad 43212 trclrelexplem 43707 corcltrcl 43735 cotrclrcl 43738 clsk3nimkb 44036 lhe4.4ex1a 44325 wfaxsep 44992 wfaxpow 44994 wfaxun 44996 dvcosax 45931 fourierdlem57 46168 fourierdlem58 46169 fourierdlem62 46173 nnsgrpnmnd 48170 elbigofrcl 48543 iunordi 49670 |
| Copyright terms: Public domain | W3C validator |