| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mprg | Structured version Visualization version GIF version | ||
| Description: Modus ponens combined with restricted generalization. (Contributed by NM, 10-Aug-2004.) |
| Ref | Expression |
|---|---|
| mprg.1 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| mprg.2 | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
| Ref | Expression |
|---|---|
| mprg | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mprg.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝜑) | |
| 2 | 1 | rgen 3051 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
| 3 | mprg.1 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ∀wral 3049 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 |
| This theorem depends on definitions: df-bi 207 df-ral 3050 |
| This theorem is referenced by: rmoimia 3697 reuxfrd 3704 2reurmo 3715 rabxm 4341 ralf0 4465 iuneq2i 4965 iineq2i 4966 dfiun2 4984 dfiin2 4985 eusv4 5348 dfiun3 5916 dfiin3 5917 relmptopab 7605 fsplitfpar 8057 ixpint 8858 noinfep 9560 tctr 9638 r1elssi 9708 ackbij2 10143 hsmexlem5 10331 axcc2lem 10337 inar1 10676 ccatalpha 14511 sumeq2i 15615 sum2id 15625 prodeq2i 15835 prod2id 15845 prdsbasex 17364 fnmrc 17523 sscpwex 17732 gsumwspan 18764 0frgp 19701 subdrgint 20728 frgpcyg 21520 psrbaglefi 21873 mvrf1 21933 mplmonmul 21981 elpt 23497 ptbasin2 23503 ptbasfi 23506 ptcld 23538 ptrescn 23564 xkoinjcn 23612 ptuncnv 23732 ptunhmeo 23733 itgfsum 25765 rolle 25931 dvlip 25935 dvivthlem1 25950 dvivth 25952 pserdv 26376 logtayl 26606 goeqi 32264 reuxfrdf 32481 sxbrsigalem0 34295 bnj852 34944 bnj1145 35016 tz9.1regs 35141 cvmsss2 35329 cvmliftphtlem 35372 dfon2lem1 35836 dfon2lem3 35838 dfon2lem7 35842 disjeq12i 36248 ptrest 37669 mblfinlem2 37708 voliunnfl 37714 sdclem2 37792 dmmzp 42840 arearect 43322 areaquad 43323 trclrelexplem 43818 corcltrcl 43846 cotrclrcl 43849 clsk3nimkb 44147 lhe4.4ex1a 44436 wfaxsep 45102 wfaxpow 45104 wfaxun 45106 dvcosax 46038 fourierdlem57 46275 fourierdlem58 46276 fourierdlem62 46280 nnsgrpnmnd 48292 elbigofrcl 48665 iunordi 49792 |
| Copyright terms: Public domain | W3C validator |