| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mprg | Structured version Visualization version GIF version | ||
| Description: Modus ponens combined with restricted generalization. (Contributed by NM, 10-Aug-2004.) |
| Ref | Expression |
|---|---|
| mprg.1 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| mprg.2 | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
| Ref | Expression |
|---|---|
| mprg | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mprg.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝜑) | |
| 2 | 1 | rgen 3053 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
| 3 | mprg.1 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3051 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 |
| This theorem depends on definitions: df-bi 207 df-ral 3052 |
| This theorem is referenced by: rmoimia 3724 reuxfrd 3731 2reurmo 3742 rabxm 4365 ralf0 4489 iuneq2i 4989 iineq2i 4990 dfiun2 5009 dfiin2 5010 eusv4 5376 dfiun3 5949 dfiin3 5950 relmptopab 7657 fsplitfpar 8117 ixpint 8939 noinfep 9674 tctr 9754 r1elssi 9819 ackbij2 10256 hsmexlem5 10444 axcc2lem 10450 inar1 10789 ccatalpha 14611 sumeq2i 15714 sum2id 15724 prodeq2i 15934 prod2id 15944 prdsbasex 17464 fnmrc 17619 sscpwex 17828 gsumwspan 18824 0frgp 19760 subdrgint 20763 frgpcyg 21534 psrbaglefi 21886 mvrf1 21946 mplmonmul 21994 elpt 23510 ptbasin2 23516 ptbasfi 23519 ptcld 23551 ptrescn 23577 xkoinjcn 23625 ptuncnv 23745 ptunhmeo 23746 itgfsum 25780 rolle 25946 dvlip 25950 dvivthlem1 25965 dvivth 25967 pserdv 26391 logtayl 26621 goeqi 32254 reuxfrdf 32472 sxbrsigalem0 34303 bnj852 34952 bnj1145 35024 cvmsss2 35296 cvmliftphtlem 35339 dfon2lem1 35801 dfon2lem3 35803 dfon2lem7 35807 disjeq12i 36211 ptrest 37643 mblfinlem2 37682 voliunnfl 37688 sdclem2 37766 dmmzp 42756 arearect 43239 areaquad 43240 trclrelexplem 43735 corcltrcl 43763 cotrclrcl 43766 clsk3nimkb 44064 lhe4.4ex1a 44353 wfaxsep 45020 wfaxpow 45022 wfaxun 45024 dvcosax 45955 fourierdlem57 46192 fourierdlem58 46193 fourierdlem62 46197 nnsgrpnmnd 48153 elbigofrcl 48530 iunordi 49541 |
| Copyright terms: Public domain | W3C validator |