| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mprg | Structured version Visualization version GIF version | ||
| Description: Modus ponens combined with restricted generalization. (Contributed by NM, 10-Aug-2004.) |
| Ref | Expression |
|---|---|
| mprg.1 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| mprg.2 | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
| Ref | Expression |
|---|---|
| mprg | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mprg.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝜑) | |
| 2 | 1 | rgen 3052 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
| 3 | mprg.1 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 ∀wral 3050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 |
| This theorem depends on definitions: df-bi 207 df-ral 3051 |
| This theorem is referenced by: rmoimia 3729 reuxfrd 3736 2reurmo 3747 rabxm 4370 ralf0 4494 iuneq2i 4993 iineq2i 4994 dfiun2 5013 dfiin2 5014 eusv4 5386 dfiun3 5960 dfiin3 5961 relmptopab 7665 fsplitfpar 8125 ixpint 8947 noinfep 9682 tctr 9762 r1elssi 9827 ackbij2 10264 hsmexlem5 10452 axcc2lem 10458 inar1 10797 ccatalpha 14613 sumeq2i 15716 sum2id 15726 prodeq2i 15936 prod2id 15946 prdsbasex 17466 fnmrc 17621 sscpwex 17830 gsumwspan 18828 0frgp 19765 subdrgint 20772 frgpcyg 21546 psrbaglefi 21900 mvrf1 21960 mplmonmul 22008 elpt 23526 ptbasin2 23532 ptbasfi 23535 ptcld 23567 ptrescn 23593 xkoinjcn 23641 ptuncnv 23761 ptunhmeo 23762 itgfsum 25798 rolle 25964 dvlip 25968 dvivthlem1 25983 dvivth 25985 pserdv 26409 logtayl 26638 goeqi 32220 reuxfrdf 32438 sxbrsigalem0 34232 bnj852 34894 bnj1145 34966 cvmsss2 35238 cvmliftphtlem 35281 dfon2lem1 35743 dfon2lem3 35745 dfon2lem7 35749 disjeq12i 36153 ptrest 37585 mblfinlem2 37624 voliunnfl 37630 sdclem2 37708 dmmzp 42707 arearect 43190 areaquad 43191 trclrelexplem 43686 corcltrcl 43714 cotrclrcl 43717 clsk3nimkb 44015 lhe4.4ex1a 44305 wfaxsep 44969 wfaxpow 44971 wfaxun 44973 dvcosax 45898 fourierdlem57 46135 fourierdlem58 46136 fourierdlem62 46140 nnsgrpnmnd 48052 elbigofrcl 48429 iunordi 49204 |
| Copyright terms: Public domain | W3C validator |