![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mprg | Structured version Visualization version GIF version |
Description: Modus ponens combined with restricted generalization. (Contributed by NM, 10-Aug-2004.) |
Ref | Expression |
---|---|
mprg.1 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓) |
mprg.2 | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
Ref | Expression |
---|---|
mprg | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mprg.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝜑) | |
2 | 1 | rgen 3064 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
3 | mprg.1 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 ∀wral 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 |
This theorem depends on definitions: df-bi 206 df-ral 3063 |
This theorem is referenced by: reximiaOLD 3089 rmoimia 3738 reuxfrd 3745 2reurmo 3756 ralf0 4514 iuneq2i 5019 iineq2i 5020 dfiun2 5037 dfiin2 5038 eusv4 5405 dfiun3 5966 dfiin3 5967 relmptopab 7656 fsplitfpar 8104 ixpint 8919 noinfep 9655 tctr 9735 r1elssi 9800 ackbij2 10238 hsmexlem5 10425 axcc2lem 10431 inar1 10770 ccatalpha 14543 sumeq2i 15645 sum2id 15654 prodeq2i 15863 prod2id 15872 prdsbasex 17396 fnmrc 17551 sscpwex 17762 gsumwspan 18727 0frgp 19647 subdrgint 20419 frgpcyg 21129 psrbaglefi 21485 psrbaglefiOLD 21486 mvrf1 21545 mplmonmul 21591 elpt 23076 ptbasin2 23082 ptbasfi 23085 ptcld 23117 ptrescn 23143 xkoinjcn 23191 ptuncnv 23311 ptunhmeo 23312 itgfsum 25344 rolle 25507 dvlip 25510 dvivthlem1 25525 dvivth 25527 pserdv 25941 logtayl 26168 goeqi 31526 reuxfrdf 31731 sxbrsigalem0 33270 bnj852 33932 bnj1145 34004 cvmsss2 34265 cvmliftphtlem 34308 dfon2lem1 34755 dfon2lem3 34757 dfon2lem7 34761 ptrest 36487 mblfinlem2 36526 voliunnfl 36532 sdclem2 36610 dmmzp 41471 arearect 41964 areaquad 41965 trclrelexplem 42462 corcltrcl 42490 cotrclrcl 42493 clsk3nimkb 42791 lhe4.4ex1a 43088 dvcosax 44642 fourierdlem57 44879 fourierdlem58 44880 fourierdlem62 44884 nnsgrpnmnd 46588 elbigofrcl 47236 iunordi 47722 |
Copyright terms: Public domain | W3C validator |