![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mprg | Structured version Visualization version GIF version |
Description: Modus ponens combined with restricted generalization. (Contributed by NM, 10-Aug-2004.) |
Ref | Expression |
---|---|
mprg.1 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓) |
mprg.2 | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
Ref | Expression |
---|---|
mprg | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mprg.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝜑) | |
2 | 1 | rgen 3058 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
3 | mprg.1 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 ∀wral 3056 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 |
This theorem depends on definitions: df-bi 206 df-ral 3057 |
This theorem is referenced by: reximiaOLD 3083 rmoimia 3734 reuxfrd 3741 2reurmo 3752 ralf0 4509 iuneq2i 5012 iineq2i 5013 dfiun2 5030 dfiin2 5031 eusv4 5400 dfiun3 5963 dfiin3 5964 relmptopab 7665 fsplitfpar 8117 ixpint 8935 noinfep 9675 tctr 9755 r1elssi 9820 ackbij2 10258 hsmexlem5 10445 axcc2lem 10451 inar1 10790 ccatalpha 14567 sumeq2i 15669 sum2id 15678 prodeq2i 15887 prod2id 15896 prdsbasex 17423 fnmrc 17578 sscpwex 17789 gsumwspan 18789 0frgp 19725 subdrgint 20680 frgpcyg 21494 psrbaglefi 21852 psrbaglefiOLD 21853 mvrf1 21915 mplmonmul 21961 elpt 23463 ptbasin2 23469 ptbasfi 23472 ptcld 23504 ptrescn 23530 xkoinjcn 23578 ptuncnv 23698 ptunhmeo 23699 itgfsum 25743 rolle 25909 dvlip 25913 dvivthlem1 25928 dvivth 25930 pserdv 26353 logtayl 26581 goeqi 32070 reuxfrdf 32275 sxbrsigalem0 33827 bnj852 34488 bnj1145 34560 cvmsss2 34820 cvmliftphtlem 34863 dfon2lem1 35315 dfon2lem3 35317 dfon2lem7 35321 ptrest 37027 mblfinlem2 37066 voliunnfl 37072 sdclem2 37150 dmmzp 42075 arearect 42566 areaquad 42567 trclrelexplem 43064 corcltrcl 43092 cotrclrcl 43095 clsk3nimkb 43393 lhe4.4ex1a 43689 dvcosax 45237 fourierdlem57 45474 fourierdlem58 45475 fourierdlem62 45479 nnsgrpnmnd 47163 elbigofrcl 47546 iunordi 48031 |
Copyright terms: Public domain | W3C validator |