| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mprg | Structured version Visualization version GIF version | ||
| Description: Modus ponens combined with restricted generalization. (Contributed by NM, 10-Aug-2004.) |
| Ref | Expression |
|---|---|
| mprg.1 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| mprg.2 | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
| Ref | Expression |
|---|---|
| mprg | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mprg.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝜑) | |
| 2 | 1 | rgen 3046 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
| 3 | mprg.1 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 |
| This theorem depends on definitions: df-bi 207 df-ral 3045 |
| This theorem is referenced by: rmoimia 3712 reuxfrd 3719 2reurmo 3730 rabxm 4353 ralf0 4477 iuneq2i 4977 iineq2i 4978 dfiun2 4997 dfiin2 4998 eusv4 5361 dfiun3 5933 dfiin3 5934 relmptopab 7639 fsplitfpar 8097 ixpint 8898 noinfep 9613 tctr 9693 r1elssi 9758 ackbij2 10195 hsmexlem5 10383 axcc2lem 10389 inar1 10728 ccatalpha 14558 sumeq2i 15664 sum2id 15674 prodeq2i 15884 prod2id 15894 prdsbasex 17413 fnmrc 17568 sscpwex 17777 gsumwspan 18773 0frgp 19709 subdrgint 20712 frgpcyg 21483 psrbaglefi 21835 mvrf1 21895 mplmonmul 21943 elpt 23459 ptbasin2 23465 ptbasfi 23468 ptcld 23500 ptrescn 23526 xkoinjcn 23574 ptuncnv 23694 ptunhmeo 23695 itgfsum 25728 rolle 25894 dvlip 25898 dvivthlem1 25913 dvivth 25915 pserdv 26339 logtayl 26569 goeqi 32202 reuxfrdf 32420 sxbrsigalem0 34262 bnj852 34911 bnj1145 34983 cvmsss2 35261 cvmliftphtlem 35304 dfon2lem1 35771 dfon2lem3 35773 dfon2lem7 35777 disjeq12i 36181 ptrest 37613 mblfinlem2 37652 voliunnfl 37658 sdclem2 37736 dmmzp 42721 arearect 43204 areaquad 43205 trclrelexplem 43700 corcltrcl 43728 cotrclrcl 43731 clsk3nimkb 44029 lhe4.4ex1a 44318 wfaxsep 44985 wfaxpow 44987 wfaxun 44989 dvcosax 45924 fourierdlem57 46161 fourierdlem58 46162 fourierdlem62 46166 nnsgrpnmnd 48166 elbigofrcl 48539 iunordi 49666 |
| Copyright terms: Public domain | W3C validator |