![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mprg | Structured version Visualization version GIF version |
Description: Modus ponens combined with restricted generalization. (Contributed by NM, 10-Aug-2004.) |
Ref | Expression |
---|---|
mprg.1 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓) |
mprg.2 | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
Ref | Expression |
---|---|
mprg | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mprg.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝜑) | |
2 | 1 | rgen 3069 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
3 | mprg.1 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 |
This theorem depends on definitions: df-bi 207 df-ral 3068 |
This theorem is referenced by: reximiaOLD 3094 rmoimia 3763 reuxfrd 3770 2reurmo 3781 rabxm 4413 ralf0 4537 iuneq2i 5036 iineq2i 5037 dfiun2 5056 dfiin2 5057 eusv4 5424 dfiun3 5992 dfiin3 5993 relmptopab 7700 fsplitfpar 8159 ixpint 8983 noinfep 9729 tctr 9809 r1elssi 9874 ackbij2 10311 hsmexlem5 10499 axcc2lem 10505 inar1 10844 ccatalpha 14641 sumeq2i 15746 sum2id 15756 prodeq2i 15966 prod2id 15976 prdsbasex 17510 fnmrc 17665 sscpwex 17876 gsumwspan 18881 0frgp 19821 subdrgint 20826 frgpcyg 21615 psrbaglefi 21969 mvrf1 22029 mplmonmul 22077 elpt 23601 ptbasin2 23607 ptbasfi 23610 ptcld 23642 ptrescn 23668 xkoinjcn 23716 ptuncnv 23836 ptunhmeo 23837 itgfsum 25882 rolle 26048 dvlip 26052 dvivthlem1 26067 dvivth 26069 pserdv 26491 logtayl 26720 goeqi 32305 reuxfrdf 32519 sxbrsigalem0 34236 bnj852 34897 bnj1145 34969 cvmsss2 35242 cvmliftphtlem 35285 dfon2lem1 35747 dfon2lem3 35749 dfon2lem7 35753 disjeq12i 36157 ptrest 37579 mblfinlem2 37618 voliunnfl 37624 sdclem2 37702 dmmzp 42689 arearect 43176 areaquad 43177 trclrelexplem 43673 corcltrcl 43701 cotrclrcl 43704 clsk3nimkb 44002 lhe4.4ex1a 44298 dvcosax 45847 fourierdlem57 46084 fourierdlem58 46085 fourierdlem62 46089 nnsgrpnmnd 47901 elbigofrcl 48284 iunordi 48769 |
Copyright terms: Public domain | W3C validator |