| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mprg | Structured version Visualization version GIF version | ||
| Description: Modus ponens combined with restricted generalization. (Contributed by NM, 10-Aug-2004.) |
| Ref | Expression |
|---|---|
| mprg.1 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| mprg.2 | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
| Ref | Expression |
|---|---|
| mprg | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mprg.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝜑) | |
| 2 | 1 | rgen 3046 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
| 3 | mprg.1 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 |
| This theorem depends on definitions: df-bi 207 df-ral 3045 |
| This theorem is referenced by: rmoimia 3703 reuxfrd 3710 2reurmo 3721 rabxm 4343 ralf0 4467 iuneq2i 4966 iineq2i 4967 dfiun2 4985 dfiin2 4986 eusv4 5348 dfiun3 5915 dfiin3 5916 relmptopab 7603 fsplitfpar 8058 ixpint 8859 noinfep 9575 tctr 9655 r1elssi 9720 ackbij2 10155 hsmexlem5 10343 axcc2lem 10349 inar1 10688 ccatalpha 14518 sumeq2i 15623 sum2id 15633 prodeq2i 15843 prod2id 15853 prdsbasex 17372 fnmrc 17531 sscpwex 17740 gsumwspan 18738 0frgp 19676 subdrgint 20706 frgpcyg 21498 psrbaglefi 21851 mvrf1 21911 mplmonmul 21959 elpt 23475 ptbasin2 23481 ptbasfi 23484 ptcld 23516 ptrescn 23542 xkoinjcn 23590 ptuncnv 23710 ptunhmeo 23711 itgfsum 25744 rolle 25910 dvlip 25914 dvivthlem1 25929 dvivth 25931 pserdv 26355 logtayl 26585 goeqi 32235 reuxfrdf 32453 sxbrsigalem0 34238 bnj852 34887 bnj1145 34959 tz9.1regs 35066 cvmsss2 35246 cvmliftphtlem 35289 dfon2lem1 35756 dfon2lem3 35758 dfon2lem7 35762 disjeq12i 36166 ptrest 37598 mblfinlem2 37637 voliunnfl 37643 sdclem2 37721 dmmzp 42706 arearect 43188 areaquad 43189 trclrelexplem 43684 corcltrcl 43712 cotrclrcl 43715 clsk3nimkb 44013 lhe4.4ex1a 44302 wfaxsep 44969 wfaxpow 44971 wfaxun 44973 dvcosax 45908 fourierdlem57 46145 fourierdlem58 46146 fourierdlem62 46150 nnsgrpnmnd 48150 elbigofrcl 48523 iunordi 49650 |
| Copyright terms: Public domain | W3C validator |