![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mprg | Structured version Visualization version GIF version |
Description: Modus ponens combined with restricted generalization. (Contributed by NM, 10-Aug-2004.) |
Ref | Expression |
---|---|
mprg.1 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓) |
mprg.2 | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
Ref | Expression |
---|---|
mprg | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mprg.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝜑) | |
2 | 1 | rgen 3061 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
3 | mprg.1 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∀wral 3059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 |
This theorem depends on definitions: df-bi 207 df-ral 3060 |
This theorem is referenced by: reximiaOLD 3086 rmoimia 3750 reuxfrd 3757 2reurmo 3768 rabxm 4396 ralf0 4520 iuneq2i 5018 iineq2i 5019 dfiun2 5038 dfiin2 5039 eusv4 5412 dfiun3 5983 dfiin3 5984 relmptopab 7683 fsplitfpar 8142 ixpint 8964 noinfep 9698 tctr 9778 r1elssi 9843 ackbij2 10280 hsmexlem5 10468 axcc2lem 10474 inar1 10813 ccatalpha 14628 sumeq2i 15731 sum2id 15741 prodeq2i 15951 prod2id 15961 prdsbasex 17497 fnmrc 17652 sscpwex 17863 gsumwspan 18872 0frgp 19812 subdrgint 20821 frgpcyg 21610 psrbaglefi 21964 mvrf1 22024 mplmonmul 22072 elpt 23596 ptbasin2 23602 ptbasfi 23605 ptcld 23637 ptrescn 23663 xkoinjcn 23711 ptuncnv 23831 ptunhmeo 23832 itgfsum 25877 rolle 26043 dvlip 26047 dvivthlem1 26062 dvivth 26064 pserdv 26488 logtayl 26717 goeqi 32302 reuxfrdf 32519 sxbrsigalem0 34253 bnj852 34914 bnj1145 34986 cvmsss2 35259 cvmliftphtlem 35302 dfon2lem1 35765 dfon2lem3 35767 dfon2lem7 35771 disjeq12i 36175 ptrest 37606 mblfinlem2 37645 voliunnfl 37651 sdclem2 37729 dmmzp 42721 arearect 43204 areaquad 43205 trclrelexplem 43701 corcltrcl 43729 cotrclrcl 43732 clsk3nimkb 44030 lhe4.4ex1a 44325 wfaxsep 44951 dvcosax 45882 fourierdlem57 46119 fourierdlem58 46120 fourierdlem62 46124 nnsgrpnmnd 48022 elbigofrcl 48400 iunordi 48908 |
Copyright terms: Public domain | W3C validator |