| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mprg | Structured version Visualization version GIF version | ||
| Description: Modus ponens combined with restricted generalization. (Contributed by NM, 10-Aug-2004.) |
| Ref | Expression |
|---|---|
| mprg.1 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| mprg.2 | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
| Ref | Expression |
|---|---|
| mprg | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mprg.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝜑) | |
| 2 | 1 | rgen 3047 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
| 3 | mprg.1 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2110 ∀wral 3045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 |
| This theorem depends on definitions: df-bi 207 df-ral 3046 |
| This theorem is referenced by: rmoimia 3698 reuxfrd 3705 2reurmo 3716 rabxm 4338 ralf0 4462 iuneq2i 4961 iineq2i 4962 dfiun2 4980 dfiin2 4981 eusv4 5342 dfiun3 5906 dfiin3 5907 relmptopab 7591 fsplitfpar 8043 ixpint 8844 noinfep 9545 tctr 9625 r1elssi 9690 ackbij2 10125 hsmexlem5 10313 axcc2lem 10319 inar1 10658 ccatalpha 14493 sumeq2i 15597 sum2id 15607 prodeq2i 15817 prod2id 15827 prdsbasex 17346 fnmrc 17505 sscpwex 17714 gsumwspan 18746 0frgp 19684 subdrgint 20711 frgpcyg 21503 psrbaglefi 21856 mvrf1 21916 mplmonmul 21964 elpt 23480 ptbasin2 23486 ptbasfi 23489 ptcld 23521 ptrescn 23547 xkoinjcn 23595 ptuncnv 23715 ptunhmeo 23716 itgfsum 25748 rolle 25914 dvlip 25918 dvivthlem1 25933 dvivth 25935 pserdv 26359 logtayl 26589 goeqi 32243 reuxfrdf 32460 sxbrsigalem0 34274 bnj852 34923 bnj1145 34995 tz9.1regs 35102 cvmsss2 35286 cvmliftphtlem 35329 dfon2lem1 35796 dfon2lem3 35798 dfon2lem7 35802 disjeq12i 36206 ptrest 37638 mblfinlem2 37677 voliunnfl 37683 sdclem2 37761 dmmzp 42745 arearect 43227 areaquad 43228 trclrelexplem 43723 corcltrcl 43751 cotrclrcl 43754 clsk3nimkb 44052 lhe4.4ex1a 44341 wfaxsep 45007 wfaxpow 45009 wfaxun 45011 dvcosax 45943 fourierdlem57 46180 fourierdlem58 46181 fourierdlem62 46185 nnsgrpnmnd 48188 elbigofrcl 48561 iunordi 49688 |
| Copyright terms: Public domain | W3C validator |