Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mprg | Structured version Visualization version GIF version |
Description: Modus ponens combined with restricted generalization. (Contributed by NM, 10-Aug-2004.) |
Ref | Expression |
---|---|
mprg.1 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓) |
mprg.2 | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
Ref | Expression |
---|---|
mprg | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mprg.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝜑) | |
2 | 1 | rgen 3080 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
3 | mprg.1 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 ∀wral 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 |
This theorem depends on definitions: df-bi 210 df-ral 3075 |
This theorem is referenced by: reximia 3170 rmoimia 3655 reuxfrd 3662 2reurmo 3674 ralf0 4406 iuneq2i 4904 iineq2i 4905 dfiun2 4922 dfiin2 4923 eusv4 5275 dfiun3 5807 dfiin3 5808 relmptopab 7391 fsplitfpar 7819 ixpint 8507 noinfep 9156 tctr 9215 r1elssi 9267 ackbij2 9703 hsmexlem5 9890 axcc2lem 9896 inar1 10235 ccatalpha 13994 sumeq2i 15104 sum2id 15113 prodeq2i 15321 prod2id 15330 prdsbasex 16782 fnmrc 16936 sscpwex 17144 gsumwspan 18077 0frgp 18972 subdrgint 19650 frgpcyg 20341 psrbaglefi 20694 psrbaglefiOLD 20695 mvrf1 20753 mplmonmul 20796 elpt 22272 ptbasin2 22278 ptbasfi 22281 ptcld 22313 ptrescn 22339 xkoinjcn 22387 ptuncnv 22507 ptunhmeo 22508 itgfsum 24526 rolle 24689 dvlip 24692 dvivthlem1 24707 dvivth 24709 pserdv 25123 logtayl 25350 goeqi 30155 reuxfrdf 30361 sxbrsigalem0 31757 bnj852 32421 bnj1145 32493 cvmsss2 32752 cvmliftphtlem 32795 dfon2lem1 33275 dfon2lem3 33277 dfon2lem7 33281 ptrest 35336 mblfinlem2 35375 voliunnfl 35381 sdclem2 35460 dmmzp 40047 arearect 40538 areaquad 40539 trclrelexplem 40785 corcltrcl 40813 cotrclrcl 40816 clsk3nimkb 41116 lhe4.4ex1a 41406 dvcosax 42934 fourierdlem57 43171 fourierdlem58 43172 fourierdlem62 43176 nnsgrpnmnd 44805 elbigofrcl 45329 iunordi 45598 |
Copyright terms: Public domain | W3C validator |