Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mprg | Structured version Visualization version GIF version |
Description: Modus ponens combined with restricted generalization. (Contributed by NM, 10-Aug-2004.) |
Ref | Expression |
---|---|
mprg.1 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓) |
mprg.2 | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
Ref | Expression |
---|---|
mprg | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mprg.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝜑) | |
2 | 1 | rgen 3074 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
3 | mprg.1 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∀wral 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 |
This theorem depends on definitions: df-bi 206 df-ral 3069 |
This theorem is referenced by: reximiaOLD 3177 rmoimia 3676 reuxfrd 3683 2reurmo 3694 ralf0 4444 iuneq2i 4945 iineq2i 4946 dfiun2 4963 dfiin2 4964 eusv4 5329 dfiun3 5875 dfiin3 5876 relmptopab 7519 fsplitfpar 7959 ixpint 8713 noinfep 9418 tctr 9498 r1elssi 9563 ackbij2 9999 hsmexlem5 10186 axcc2lem 10192 inar1 10531 ccatalpha 14298 sumeq2i 15411 sum2id 15420 prodeq2i 15629 prod2id 15638 prdsbasex 17161 fnmrc 17316 sscpwex 17527 gsumwspan 18485 0frgp 19385 subdrgint 20071 frgpcyg 20781 psrbaglefi 21135 psrbaglefiOLD 21136 mvrf1 21194 mplmonmul 21237 elpt 22723 ptbasin2 22729 ptbasfi 22732 ptcld 22764 ptrescn 22790 xkoinjcn 22838 ptuncnv 22958 ptunhmeo 22959 itgfsum 24991 rolle 25154 dvlip 25157 dvivthlem1 25172 dvivth 25174 pserdv 25588 logtayl 25815 goeqi 30635 reuxfrdf 30839 sxbrsigalem0 32238 bnj852 32901 bnj1145 32973 cvmsss2 33236 cvmliftphtlem 33279 dfon2lem1 33759 dfon2lem3 33761 dfon2lem7 33765 ptrest 35776 mblfinlem2 35815 voliunnfl 35821 sdclem2 35900 dmmzp 40555 arearect 41046 areaquad 41047 trclrelexplem 41319 corcltrcl 41347 cotrclrcl 41350 clsk3nimkb 41650 lhe4.4ex1a 41947 dvcosax 43467 fourierdlem57 43704 fourierdlem58 43705 fourierdlem62 43709 nnsgrpnmnd 45372 elbigofrcl 45896 iunordi 46383 |
Copyright terms: Public domain | W3C validator |