![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexim | Structured version Visualization version GIF version |
Description: Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
rexim | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con3 153 | . . . 4 ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) | |
2 | 1 | ral2imi 3084 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 ¬ 𝜓 → ∀𝑥 ∈ 𝐴 ¬ 𝜑)) |
3 | ralnex 3071 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜓) | |
4 | ralnex 3071 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) | |
5 | 2, 3, 4 | 3imtr3g 295 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (¬ ∃𝑥 ∈ 𝐴 𝜓 → ¬ ∃𝑥 ∈ 𝐴 𝜑)) |
6 | 5 | con4d 115 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wral 3060 ∃wrex 3069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1781 df-ral 3061 df-rex 3070 |
This theorem is referenced by: reximiaOLD 3087 rexbi 3103 r19.35OLD 3108 r19.29OLD 3114 r19.30 3119 reximdvaiOLD 3165 reximdai 3257 reupick2 4320 ss2iun 5015 dfiun2g 5033 chfnrn 7050 isf32lem2 10355 ptcmplem4 23792 madebdayim 27634 madebdaylemold 27644 bnj110 34182 poimirlem25 36829 |
Copyright terms: Public domain | W3C validator |