MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexim Structured version   Visualization version   GIF version

Theorem rexim 3070
Description: Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Assertion
Ref Expression
rexim (∀𝑥𝐴 (𝜑𝜓) → (∃𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓))

Proof of Theorem rexim
StepHypRef Expression
1 con3 153 . . . 4 ((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))
21ral2imi 3068 . . 3 (∀𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 ¬ 𝜓 → ∀𝑥𝐴 ¬ 𝜑))
3 ralnex 3055 . . 3 (∀𝑥𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥𝐴 𝜓)
4 ralnex 3055 . . 3 (∀𝑥𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥𝐴 𝜑)
52, 3, 43imtr3g 295 . 2 (∀𝑥𝐴 (𝜑𝜓) → (¬ ∃𝑥𝐴 𝜓 → ¬ ∃𝑥𝐴 𝜑))
65con4d 115 1 (∀𝑥𝐴 (𝜑𝜓) → (∃𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wral 3044  wrex 3053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-ral 3045  df-rex 3054
This theorem is referenced by:  rexbi  3085  r19.30  3096  reximdai  3231  reupick2  4284  ss2iun  4963  dfiun2g  4983  chfnrn  6987  isf32lem2  10267  psdmul  22069  ptcmplem4  23958  madebdayim  27820  madebdaylemold  27830  bnj110  34824  poimirlem25  37624
  Copyright terms: Public domain W3C validator