MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexim Structured version   Visualization version   GIF version

Theorem rexim 3168
Description: Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Assertion
Ref Expression
rexim (∀𝑥𝐴 (𝜑𝜓) → (∃𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓))

Proof of Theorem rexim
StepHypRef Expression
1 con3 153 . . . 4 ((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))
21ral2imi 3081 . . 3 (∀𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 ¬ 𝜓 → ∀𝑥𝐴 ¬ 𝜑))
32con3d 152 . 2 (∀𝑥𝐴 (𝜑𝜓) → (¬ ∀𝑥𝐴 ¬ 𝜑 → ¬ ∀𝑥𝐴 ¬ 𝜓))
4 dfrex2 3166 . 2 (∃𝑥𝐴 𝜑 ↔ ¬ ∀𝑥𝐴 ¬ 𝜑)
5 dfrex2 3166 . 2 (∃𝑥𝐴 𝜓 ↔ ¬ ∀𝑥𝐴 ¬ 𝜓)
63, 4, 53imtr4g 295 1 (∀𝑥𝐴 (𝜑𝜓) → (∃𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wral 3063  wrex 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-ral 3068  df-rex 3069
This theorem is referenced by:  rexbi  3169  reximiaOLD  3173  r19.29  3183  reximdvaiOLD  3200  reximdai  3239  r19.30  3265  r19.35  3268  reupick2  4251  ss2iun  4939  chfnrn  6908  isf32lem2  10041  ptcmplem4  23114  bnj110  32738  madebdayim  33997  madebdaylemold  34005  poimirlem25  35729
  Copyright terms: Public domain W3C validator