MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexim Structured version   Visualization version   GIF version

Theorem rexim 3093
Description: Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Assertion
Ref Expression
rexim (∀𝑥𝐴 (𝜑𝜓) → (∃𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓))

Proof of Theorem rexim
StepHypRef Expression
1 con3 153 . . . 4 ((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))
21ral2imi 3091 . . 3 (∀𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 ¬ 𝜓 → ∀𝑥𝐴 ¬ 𝜑))
3 ralnex 3078 . . 3 (∀𝑥𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥𝐴 𝜓)
4 ralnex 3078 . . 3 (∀𝑥𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥𝐴 𝜑)
52, 3, 43imtr3g 295 . 2 (∀𝑥𝐴 (𝜑𝜓) → (¬ ∃𝑥𝐴 𝜓 → ¬ ∃𝑥𝐴 𝜑))
65con4d 115 1 (∀𝑥𝐴 (𝜑𝜓) → (∃𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wral 3067  wrex 3076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-ral 3068  df-rex 3077
This theorem is referenced by:  reximiaOLD  3094  rexbi  3110  r19.35OLD  3115  r19.29OLD  3121  r19.30  3126  reximdvaiOLD  3172  reximdai  3267  reupick2  4350  ss2iun  5033  dfiun2g  5053  chfnrn  7082  isf32lem2  10423  psdmul  22193  ptcmplem4  24084  madebdayim  27944  madebdaylemold  27954  bnj110  34834  poimirlem25  37605
  Copyright terms: Public domain W3C validator