MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexim Structured version   Visualization version   GIF version

Theorem rexim 3071
Description: Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Assertion
Ref Expression
rexim (∀𝑥𝐴 (𝜑𝜓) → (∃𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓))

Proof of Theorem rexim
StepHypRef Expression
1 con3 153 . . . 4 ((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))
21ral2imi 3069 . . 3 (∀𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 ¬ 𝜓 → ∀𝑥𝐴 ¬ 𝜑))
3 ralnex 3056 . . 3 (∀𝑥𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥𝐴 𝜓)
4 ralnex 3056 . . 3 (∀𝑥𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥𝐴 𝜑)
52, 3, 43imtr3g 295 . 2 (∀𝑥𝐴 (𝜑𝜓) → (¬ ∃𝑥𝐴 𝜓 → ¬ ∃𝑥𝐴 𝜑))
65con4d 115 1 (∀𝑥𝐴 (𝜑𝜓) → (∃𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wral 3045  wrex 3054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-ral 3046  df-rex 3055
This theorem is referenced by:  rexbi  3087  r19.35OLD  3090  r19.29OLD  3096  r19.30  3101  reximdai  3240  reupick2  4297  ss2iun  4977  dfiun2g  4997  chfnrn  7024  isf32lem2  10314  psdmul  22060  ptcmplem4  23949  madebdayim  27806  madebdaylemold  27816  bnj110  34855  poimirlem25  37646
  Copyright terms: Public domain W3C validator