| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexim | Structured version Visualization version GIF version | ||
| Description: Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
| Ref | Expression |
|---|---|
| rexim | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con3 153 | . . . 4 ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) | |
| 2 | 1 | ral2imi 3068 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 ¬ 𝜓 → ∀𝑥 ∈ 𝐴 ¬ 𝜑)) |
| 3 | ralnex 3055 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜓) | |
| 4 | ralnex 3055 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) | |
| 5 | 2, 3, 4 | 3imtr3g 295 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (¬ ∃𝑥 ∈ 𝐴 𝜓 → ¬ ∃𝑥 ∈ 𝐴 𝜑)) |
| 6 | 5 | con4d 115 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wral 3044 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: rexbi 3086 r19.35OLD 3089 r19.29OLD 3095 r19.30 3100 reximdai 3239 reupick2 4294 ss2iun 4974 dfiun2g 4994 chfnrn 7021 isf32lem2 10307 psdmul 22053 ptcmplem4 23942 madebdayim 27799 madebdaylemold 27809 bnj110 34848 poimirlem25 37639 |
| Copyright terms: Public domain | W3C validator |