Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexim | Structured version Visualization version GIF version |
Description: Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
rexim | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con3 153 | . . . 4 ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) | |
2 | 1 | ral2imi 3081 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 ¬ 𝜓 → ∀𝑥 ∈ 𝐴 ¬ 𝜑)) |
3 | 2 | con3d 152 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑 → ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜓)) |
4 | dfrex2 3166 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
5 | dfrex2 3166 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜓) | |
6 | 3, 4, 5 | 3imtr4g 295 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wral 3063 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-ral 3068 df-rex 3069 |
This theorem is referenced by: rexbi 3169 reximiaOLD 3173 r19.29 3183 reximdvaiOLD 3200 reximdai 3239 r19.30 3265 r19.35 3268 reupick2 4251 ss2iun 4939 chfnrn 6908 isf32lem2 10041 ptcmplem4 23114 bnj110 32738 madebdayim 33997 madebdaylemold 34005 poimirlem25 35729 |
Copyright terms: Public domain | W3C validator |