| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rexlimd3 | Structured version Visualization version GIF version | ||
| Description: * Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| rexlimd3.1 | ⊢ Ⅎ𝑥𝜑 |
| rexlimd3.2 | ⊢ Ⅎ𝑥𝜒 |
| rexlimd3.3 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| rexlimd3 | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimd3.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | rexlimd3.2 | . 2 ⊢ Ⅎ𝑥𝜒 | |
| 3 | rexlimd3.3 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
| 4 | 3 | exp31 419 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
| 5 | 1, 2, 4 | rexlimd 3266 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1783 ∈ wcel 2108 ∃wrex 3070 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-ral 3062 df-rex 3071 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |