![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rexlimd3 | Structured version Visualization version GIF version |
Description: * Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
rexlimd3.1 | ⊢ Ⅎ𝑥𝜑 |
rexlimd3.2 | ⊢ Ⅎ𝑥𝜒 |
rexlimd3.3 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
rexlimd3 | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimd3.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | rexlimd3.2 | . 2 ⊢ Ⅎ𝑥𝜒 | |
3 | rexlimd3.3 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
4 | 3 | exp31 406 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
5 | 1, 2, 4 | rexlimd 3174 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 Ⅎwnf 1856 ∈ wcel 2145 ∃wrex 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-12 2203 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-ex 1853 df-nf 1858 df-ral 3066 df-rex 3067 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |