Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexlimd | Structured version Visualization version GIF version |
Description: Deduction form of rexlimd 3247. (Contributed by NM, 27-May-1998.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof shortened by Wolf Lammen, 14-Jan-2020.) |
Ref | Expression |
---|---|
rexlimd.1 | ⊢ Ⅎ𝑥𝜑 |
rexlimd.2 | ⊢ Ⅎ𝑥𝜒 |
rexlimd.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
rexlimd | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimd.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | rexlimd.2 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜒) |
4 | rexlimd.3 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
5 | 1, 3, 4 | rexlimd2 3246 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Copyright terms: Public domain | W3C validator |