![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rexnegd | Structured version Visualization version GIF version |
Description: Minus a real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
rexnegd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Ref | Expression |
---|---|
rexnegd | ⊢ (𝜑 → -𝑒𝐴 = -𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexnegd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | rexneg 12290 | . 2 ⊢ (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → -𝑒𝐴 = -𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 ℝcr 10224 -cneg 10558 -𝑒cxne 12189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-resscn 10282 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-br 4845 df-opab 4907 df-mpt 4924 df-id 5221 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-er 7983 df-en 8197 df-dom 8198 df-sdom 8199 df-pnf 10366 df-mnf 10367 df-xneg 12192 |
This theorem is referenced by: supminfxr 40432 supminfxr2 40437 liminfval4 40760 liminfvaluz2 40766 limsupvaluz4 40771 climliminflimsupd 40772 liminfltlem 40775 smfliminflem 41777 |
Copyright terms: Public domain | W3C validator |