Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rpsscn Structured version   Visualization version   GIF version

Theorem rpsscn 42315
Description: The positive reals are a subset of the complex numbers. (Contributed by SN, 1-Oct-2025.)
Assertion
Ref Expression
rpsscn + ⊆ ℂ

Proof of Theorem rpsscn
StepHypRef Expression
1 rpssre 13021 . 2 + ⊆ ℝ
2 ax-resscn 11191 . 2 ℝ ⊆ ℂ
31, 2sstri 3973 1 + ⊆ ℂ
Colors of variables: wff setvar class
Syntax hints:  wss 3931  cc 11132  cr 11133  +crp 13013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-resscn 11191
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-ss 3948  df-rp 13014
This theorem is referenced by:  readvrec2  42371
  Copyright terms: Public domain W3C validator