Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  readvrec2 Structured version   Visualization version   GIF version

Theorem readvrec2 42369
Description: The antiderivative of 1/x in real numbers, without using the absolute value function. (Contributed by SN, 1-Oct-2025.)
Hypothesis
Ref Expression
redvabs.d 𝐷 = (ℝ ∖ {0})
Assertion
Ref Expression
readvrec2 (ℝ D (𝑥𝐷 ↦ ((log‘(𝑥↑2)) / 2))) = (𝑥𝐷 ↦ (1 / 𝑥))
Distinct variable group:   𝑥,𝐷

Proof of Theorem readvrec2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 reelprrecn 11244 . . . . 5 ℝ ∈ {ℝ, ℂ}
21a1i 11 . . . 4 (⊤ → ℝ ∈ {ℝ, ℂ})
3 redvabs.d . . . . . . . . . . 11 𝐷 = (ℝ ∖ {0})
43eleq2i 2830 . . . . . . . . . 10 (𝑥𝐷𝑥 ∈ (ℝ ∖ {0}))
5 eldifsn 4790 . . . . . . . . . 10 (𝑥 ∈ (ℝ ∖ {0}) ↔ (𝑥 ∈ ℝ ∧ 𝑥 ≠ 0))
64, 5bitri 275 . . . . . . . . 9 (𝑥𝐷 ↔ (𝑥 ∈ ℝ ∧ 𝑥 ≠ 0))
76simplbi 497 . . . . . . . 8 (𝑥𝐷𝑥 ∈ ℝ)
87recnd 11286 . . . . . . 7 (𝑥𝐷𝑥 ∈ ℂ)
98sqcld 14180 . . . . . 6 (𝑥𝐷 → (𝑥↑2) ∈ ℂ)
106simprbi 496 . . . . . . 7 (𝑥𝐷𝑥 ≠ 0)
11 sqne0 14159 . . . . . . . 8 (𝑥 ∈ ℂ → ((𝑥↑2) ≠ 0 ↔ 𝑥 ≠ 0))
128, 11syl 17 . . . . . . 7 (𝑥𝐷 → ((𝑥↑2) ≠ 0 ↔ 𝑥 ≠ 0))
1310, 12mpbird 257 . . . . . 6 (𝑥𝐷 → (𝑥↑2) ≠ 0)
149, 13logcld 26626 . . . . 5 (𝑥𝐷 → (log‘(𝑥↑2)) ∈ ℂ)
1514adantl 481 . . . 4 ((⊤ ∧ 𝑥𝐷) → (log‘(𝑥↑2)) ∈ ℂ)
16 ovexd 7465 . . . 4 ((⊤ ∧ 𝑥𝐷) → ((1 / (𝑥↑2)) · (2 · 𝑥)) ∈ V)
17 cnelprrecn 11245 . . . . . 6 ℂ ∈ {ℝ, ℂ}
1817a1i 11 . . . . 5 (⊤ → ℂ ∈ {ℝ, ℂ})
19 incom 4216 . . . . . . . . 9 (ℝ+ ∩ (-∞(,]0)) = ((-∞(,]0) ∩ ℝ+)
20 dfrp2 13432 . . . . . . . . . 10 + = (0(,)+∞)
2120ineq2i 4224 . . . . . . . . 9 ((-∞(,]0) ∩ ℝ+) = ((-∞(,]0) ∩ (0(,)+∞))
22 mnfxr 11315 . . . . . . . . . . . 12 -∞ ∈ ℝ*
2322a1i 11 . . . . . . . . . . 11 (⊤ → -∞ ∈ ℝ*)
24 0xr 11305 . . . . . . . . . . . 12 0 ∈ ℝ*
2524a1i 11 . . . . . . . . . . 11 (⊤ → 0 ∈ ℝ*)
26 pnfxr 11312 . . . . . . . . . . . 12 +∞ ∈ ℝ*
2726a1i 11 . . . . . . . . . . 11 (⊤ → +∞ ∈ ℝ*)
2823, 25, 27iocioodisjd 42333 . . . . . . . . . 10 (⊤ → ((-∞(,]0) ∩ (0(,)+∞)) = ∅)
2928mptru 1543 . . . . . . . . 9 ((-∞(,]0) ∩ (0(,)+∞)) = ∅
3019, 21, 293eqtri 2766 . . . . . . . 8 (ℝ+ ∩ (-∞(,]0)) = ∅
31 disjdif2 4485 . . . . . . . 8 ((ℝ+ ∩ (-∞(,]0)) = ∅ → (ℝ+ ∖ (-∞(,]0)) = ℝ+)
3230, 31ax-mp 5 . . . . . . 7 (ℝ+ ∖ (-∞(,]0)) = ℝ+
33 rpsscn 42311 . . . . . . . 8 + ⊆ ℂ
34 ssdif 4153 . . . . . . . 8 (ℝ+ ⊆ ℂ → (ℝ+ ∖ (-∞(,]0)) ⊆ (ℂ ∖ (-∞(,]0)))
3533, 34ax-mp 5 . . . . . . 7 (ℝ+ ∖ (-∞(,]0)) ⊆ (ℂ ∖ (-∞(,]0))
3632, 35eqsstrri 4030 . . . . . 6 + ⊆ (ℂ ∖ (-∞(,]0))
3710adantl 481 . . . . . . 7 ((⊤ ∧ 𝑥𝐷) → 𝑥 ≠ 0)
38 sqn0rp 14163 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) → (𝑥↑2) ∈ ℝ+)
397, 37, 38syl2an2 686 . . . . . 6 ((⊤ ∧ 𝑥𝐷) → (𝑥↑2) ∈ ℝ+)
4036, 39sselid 3992 . . . . 5 ((⊤ ∧ 𝑥𝐷) → (𝑥↑2) ∈ (ℂ ∖ (-∞(,]0)))
41 ovexd 7465 . . . . 5 ((⊤ ∧ 𝑥𝐷) → (2 · 𝑥) ∈ V)
42 eldifi 4140 . . . . . . 7 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) → 𝑦 ∈ ℂ)
43 eldifn 4141 . . . . . . . 8 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) → ¬ 𝑦 ∈ (-∞(,]0))
44 mnflt0 13164 . . . . . . . . . . 11 -∞ < 0
45 0le0 12364 . . . . . . . . . . 11 0 ≤ 0
46 elioc1 13425 . . . . . . . . . . . 12 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*) → (0 ∈ (-∞(,]0) ↔ (0 ∈ ℝ* ∧ -∞ < 0 ∧ 0 ≤ 0)))
4722, 24, 46mp2an 692 . . . . . . . . . . 11 (0 ∈ (-∞(,]0) ↔ (0 ∈ ℝ* ∧ -∞ < 0 ∧ 0 ≤ 0))
4824, 44, 45, 47mpbir3an 1340 . . . . . . . . . 10 0 ∈ (-∞(,]0)
49 eleq1 2826 . . . . . . . . . 10 (𝑦 = 0 → (𝑦 ∈ (-∞(,]0) ↔ 0 ∈ (-∞(,]0)))
5048, 49mpbiri 258 . . . . . . . . 9 (𝑦 = 0 → 𝑦 ∈ (-∞(,]0))
5150necon3bi 2964 . . . . . . . 8 𝑦 ∈ (-∞(,]0) → 𝑦 ≠ 0)
5243, 51syl 17 . . . . . . 7 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) → 𝑦 ≠ 0)
5342, 52logcld 26626 . . . . . 6 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) → (log‘𝑦) ∈ ℂ)
5453adantl 481 . . . . 5 ((⊤ ∧ 𝑦 ∈ (ℂ ∖ (-∞(,]0))) → (log‘𝑦) ∈ ℂ)
55 ovexd 7465 . . . . 5 ((⊤ ∧ 𝑦 ∈ (ℂ ∖ (-∞(,]0))) → (1 / 𝑦) ∈ V)
56 recn 11242 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
5756adantl 481 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
5857sqcld 14180 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ) → (𝑥↑2) ∈ ℂ)
59 ovexd 7465 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ) → (2 · (𝑥↑(2 − 1))) ∈ V)
60 eqid 2734 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
61 cnopn 24822 . . . . . . . . 9 ℂ ∈ (TopOpen‘ℂfld)
6261a1i 11 . . . . . . . 8 (⊤ → ℂ ∈ (TopOpen‘ℂfld))
63 ax-resscn 11209 . . . . . . . . . 10 ℝ ⊆ ℂ
64 dfss2 3980 . . . . . . . . . 10 (ℝ ⊆ ℂ ↔ (ℝ ∩ ℂ) = ℝ)
6563, 64mpbi 230 . . . . . . . . 9 (ℝ ∩ ℂ) = ℝ
6665a1i 11 . . . . . . . 8 (⊤ → (ℝ ∩ ℂ) = ℝ)
67 sqcl 14154 . . . . . . . . 9 (𝑥 ∈ ℂ → (𝑥↑2) ∈ ℂ)
6867adantl 481 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → (𝑥↑2) ∈ ℂ)
69 ovexd 7465 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → (2 · (𝑥↑(2 − 1))) ∈ V)
70 2nn 12336 . . . . . . . . 9 2 ∈ ℕ
71 dvexp 26005 . . . . . . . . 9 (2 ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑2))) = (𝑥 ∈ ℂ ↦ (2 · (𝑥↑(2 − 1)))))
7270, 71mp1i 13 . . . . . . . 8 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑2))) = (𝑥 ∈ ℂ ↦ (2 · (𝑥↑(2 − 1)))))
7360, 2, 62, 66, 68, 69, 72dvmptres3 26008 . . . . . . 7 (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ (𝑥↑2))) = (𝑥 ∈ ℝ ↦ (2 · (𝑥↑(2 − 1)))))
747ssriv 3998 . . . . . . . 8 𝐷 ⊆ ℝ
7574a1i 11 . . . . . . 7 (⊤ → 𝐷 ⊆ ℝ)
7660tgioo2 24838 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
77 rehaus 24834 . . . . . . . . . . 11 (topGen‘ran (,)) ∈ Haus
78 0re 11260 . . . . . . . . . . 11 0 ∈ ℝ
79 uniretop 24798 . . . . . . . . . . . 12 ℝ = (topGen‘ran (,))
8079sncld 23394 . . . . . . . . . . 11 (((topGen‘ran (,)) ∈ Haus ∧ 0 ∈ ℝ) → {0} ∈ (Clsd‘(topGen‘ran (,))))
8177, 78, 80mp2an 692 . . . . . . . . . 10 {0} ∈ (Clsd‘(topGen‘ran (,)))
8279cldopn 23054 . . . . . . . . . 10 ({0} ∈ (Clsd‘(topGen‘ran (,))) → (ℝ ∖ {0}) ∈ (topGen‘ran (,)))
8381, 82ax-mp 5 . . . . . . . . 9 (ℝ ∖ {0}) ∈ (topGen‘ran (,))
843, 83eqeltri 2834 . . . . . . . 8 𝐷 ∈ (topGen‘ran (,))
8584a1i 11 . . . . . . 7 (⊤ → 𝐷 ∈ (topGen‘ran (,)))
862, 58, 59, 73, 75, 76, 60, 85dvmptres 26015 . . . . . 6 (⊤ → (ℝ D (𝑥𝐷 ↦ (𝑥↑2))) = (𝑥𝐷 ↦ (2 · (𝑥↑(2 − 1)))))
87 2m1e1 12389 . . . . . . . . . 10 (2 − 1) = 1
8887oveq2i 7441 . . . . . . . . 9 (𝑥↑(2 − 1)) = (𝑥↑1)
898exp1d 14177 . . . . . . . . 9 (𝑥𝐷 → (𝑥↑1) = 𝑥)
9088, 89eqtrid 2786 . . . . . . . 8 (𝑥𝐷 → (𝑥↑(2 − 1)) = 𝑥)
9190oveq2d 7446 . . . . . . 7 (𝑥𝐷 → (2 · (𝑥↑(2 − 1))) = (2 · 𝑥))
9291mpteq2ia 5250 . . . . . 6 (𝑥𝐷 ↦ (2 · (𝑥↑(2 − 1)))) = (𝑥𝐷 ↦ (2 · 𝑥))
9386, 92eqtrdi 2790 . . . . 5 (⊤ → (ℝ D (𝑥𝐷 ↦ (𝑥↑2))) = (𝑥𝐷 ↦ (2 · 𝑥)))
94 logf1o 26620 . . . . . . . . 9 log:(ℂ ∖ {0})–1-1-onto→ran log
95 f1of 6848 . . . . . . . . 9 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log)
9694, 95mp1i 13 . . . . . . . 8 (⊤ → log:(ℂ ∖ {0})⟶ran log)
97 snssi 4812 . . . . . . . . . 10 (0 ∈ (-∞(,]0) → {0} ⊆ (-∞(,]0))
9848, 97ax-mp 5 . . . . . . . . 9 {0} ⊆ (-∞(,]0)
99 sscon 4152 . . . . . . . . 9 ({0} ⊆ (-∞(,]0) → (ℂ ∖ (-∞(,]0)) ⊆ (ℂ ∖ {0}))
10098, 99mp1i 13 . . . . . . . 8 (⊤ → (ℂ ∖ (-∞(,]0)) ⊆ (ℂ ∖ {0}))
10196, 100feqresmpt 6977 . . . . . . 7 (⊤ → (log ↾ (ℂ ∖ (-∞(,]0))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦)))
102101oveq2d 7446 . . . . . 6 (⊤ → (ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) = (ℂ D (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦))))
103 eqid 2734 . . . . . . 7 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
104103dvlog 26707 . . . . . 6 (ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑦))
105102, 104eqtr3di 2789 . . . . 5 (⊤ → (ℂ D (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑦)))
106 fveq2 6906 . . . . 5 (𝑦 = (𝑥↑2) → (log‘𝑦) = (log‘(𝑥↑2)))
107 oveq2 7438 . . . . 5 (𝑦 = (𝑥↑2) → (1 / 𝑦) = (1 / (𝑥↑2)))
1082, 18, 40, 41, 54, 55, 93, 105, 106, 107dvmptco 26024 . . . 4 (⊤ → (ℝ D (𝑥𝐷 ↦ (log‘(𝑥↑2)))) = (𝑥𝐷 ↦ ((1 / (𝑥↑2)) · (2 · 𝑥))))
109 2cnd 12341 . . . 4 (⊤ → 2 ∈ ℂ)
110 2ne0 12367 . . . . 5 2 ≠ 0
111110a1i 11 . . . 4 (⊤ → 2 ≠ 0)
1122, 15, 16, 108, 109, 111dvmptdivc 26017 . . 3 (⊤ → (ℝ D (𝑥𝐷 ↦ ((log‘(𝑥↑2)) / 2))) = (𝑥𝐷 ↦ (((1 / (𝑥↑2)) · (2 · 𝑥)) / 2)))
113112mptru 1543 . 2 (ℝ D (𝑥𝐷 ↦ ((log‘(𝑥↑2)) / 2))) = (𝑥𝐷 ↦ (((1 / (𝑥↑2)) · (2 · 𝑥)) / 2))
1147resqcld 14161 . . . . . . . 8 (𝑥𝐷 → (𝑥↑2) ∈ ℝ)
115114, 13rereccld 12091 . . . . . . 7 (𝑥𝐷 → (1 / (𝑥↑2)) ∈ ℝ)
116115recnd 11286 . . . . . 6 (𝑥𝐷 → (1 / (𝑥↑2)) ∈ ℂ)
117 2cnd 12341 . . . . . 6 (𝑥𝐷 → 2 ∈ ℂ)
118116, 117, 8mul12d 11467 . . . . 5 (𝑥𝐷 → ((1 / (𝑥↑2)) · (2 · 𝑥)) = (2 · ((1 / (𝑥↑2)) · 𝑥)))
119118oveq1d 7445 . . . 4 (𝑥𝐷 → (((1 / (𝑥↑2)) · (2 · 𝑥)) / 2) = ((2 · ((1 / (𝑥↑2)) · 𝑥)) / 2))
120116, 8mulcld 11278 . . . . 5 (𝑥𝐷 → ((1 / (𝑥↑2)) · 𝑥) ∈ ℂ)
121110a1i 11 . . . . 5 (𝑥𝐷 → 2 ≠ 0)
122120, 117, 121divcan3d 12045 . . . 4 (𝑥𝐷 → ((2 · ((1 / (𝑥↑2)) · 𝑥)) / 2) = ((1 / (𝑥↑2)) · 𝑥))
1238sqvald 14179 . . . . . . 7 (𝑥𝐷 → (𝑥↑2) = (𝑥 · 𝑥))
124123oveq2d 7446 . . . . . 6 (𝑥𝐷 → (1 / (𝑥↑2)) = (1 / (𝑥 · 𝑥)))
125124oveq1d 7445 . . . . 5 (𝑥𝐷 → ((1 / (𝑥↑2)) · 𝑥) = ((1 / (𝑥 · 𝑥)) · 𝑥))
1268, 8, 10, 10recdiv2d 12058 . . . . . 6 (𝑥𝐷 → ((1 / 𝑥) / 𝑥) = (1 / (𝑥 · 𝑥)))
127126oveq1d 7445 . . . . 5 (𝑥𝐷 → (((1 / 𝑥) / 𝑥) · 𝑥) = ((1 / (𝑥 · 𝑥)) · 𝑥))
1288, 10reccld 12033 . . . . . 6 (𝑥𝐷 → (1 / 𝑥) ∈ ℂ)
129128, 8, 10divcan1d 12041 . . . . 5 (𝑥𝐷 → (((1 / 𝑥) / 𝑥) · 𝑥) = (1 / 𝑥))
130125, 127, 1293eqtr2d 2780 . . . 4 (𝑥𝐷 → ((1 / (𝑥↑2)) · 𝑥) = (1 / 𝑥))
131119, 122, 1303eqtrd 2778 . . 3 (𝑥𝐷 → (((1 / (𝑥↑2)) · (2 · 𝑥)) / 2) = (1 / 𝑥))
132131mpteq2ia 5250 . 2 (𝑥𝐷 ↦ (((1 / (𝑥↑2)) · (2 · 𝑥)) / 2)) = (𝑥𝐷 ↦ (1 / 𝑥))
133113, 132eqtri 2762 1 (ℝ D (𝑥𝐷 ↦ ((log‘(𝑥↑2)) / 2))) = (𝑥𝐷 ↦ (1 / 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  w3a 1086   = wceq 1536  wtru 1537  wcel 2105  wne 2937  Vcvv 3477  cdif 3959  cin 3961  wss 3962  c0 4338  {csn 4630  {cpr 4632   class class class wbr 5147  cmpt 5230  ran crn 5689  cres 5690  wf 6558  1-1-ontowf1o 6561  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  0cc0 11152  1c1 11153   · cmul 11157  +∞cpnf 11289  -∞cmnf 11290  *cxr 11291   < clt 11292  cle 11293  cmin 11489   / cdiv 11917  cn 12263  2c2 12318  +crp 13031  (,)cioo 13383  (,]cioc 13384  cexp 14098  TopOpenctopn 17467  topGenctg 17483  fldccnfld 21381  Clsdccld 23039  Hauscha 23331   D cdv 25912  logclog 26610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-ef 16099  df-sin 16101  df-cos 16102  df-tan 16103  df-pi 16104  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-t1 23337  df-haus 23338  df-cmp 23410  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-limc 25915  df-dv 25916  df-log 26612
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator