Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  readvrec2 Structured version   Visualization version   GIF version

Theorem readvrec2 42453
Description: The antiderivative of 1/x in real numbers, without using the absolute value function. (Contributed by SN, 1-Oct-2025.)
Hypothesis
Ref Expression
redvabs.d 𝐷 = (ℝ ∖ {0})
Assertion
Ref Expression
readvrec2 (ℝ D (𝑥𝐷 ↦ ((log‘(𝑥↑2)) / 2))) = (𝑥𝐷 ↦ (1 / 𝑥))
Distinct variable group:   𝑥,𝐷

Proof of Theorem readvrec2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 reelprrecn 11098 . . . . 5 ℝ ∈ {ℝ, ℂ}
21a1i 11 . . . 4 (⊤ → ℝ ∈ {ℝ, ℂ})
3 redvabs.d . . . . . . . . . . 11 𝐷 = (ℝ ∖ {0})
43eleq2i 2823 . . . . . . . . . 10 (𝑥𝐷𝑥 ∈ (ℝ ∖ {0}))
5 eldifsn 4735 . . . . . . . . . 10 (𝑥 ∈ (ℝ ∖ {0}) ↔ (𝑥 ∈ ℝ ∧ 𝑥 ≠ 0))
64, 5bitri 275 . . . . . . . . 9 (𝑥𝐷 ↔ (𝑥 ∈ ℝ ∧ 𝑥 ≠ 0))
76simplbi 497 . . . . . . . 8 (𝑥𝐷𝑥 ∈ ℝ)
87recnd 11140 . . . . . . 7 (𝑥𝐷𝑥 ∈ ℂ)
98sqcld 14051 . . . . . 6 (𝑥𝐷 → (𝑥↑2) ∈ ℂ)
106simprbi 496 . . . . . . 7 (𝑥𝐷𝑥 ≠ 0)
11 sqne0 14030 . . . . . . . 8 (𝑥 ∈ ℂ → ((𝑥↑2) ≠ 0 ↔ 𝑥 ≠ 0))
128, 11syl 17 . . . . . . 7 (𝑥𝐷 → ((𝑥↑2) ≠ 0 ↔ 𝑥 ≠ 0))
1310, 12mpbird 257 . . . . . 6 (𝑥𝐷 → (𝑥↑2) ≠ 0)
149, 13logcld 26506 . . . . 5 (𝑥𝐷 → (log‘(𝑥↑2)) ∈ ℂ)
1514adantl 481 . . . 4 ((⊤ ∧ 𝑥𝐷) → (log‘(𝑥↑2)) ∈ ℂ)
16 ovexd 7381 . . . 4 ((⊤ ∧ 𝑥𝐷) → ((1 / (𝑥↑2)) · (2 · 𝑥)) ∈ V)
17 cnelprrecn 11099 . . . . . 6 ℂ ∈ {ℝ, ℂ}
1817a1i 11 . . . . 5 (⊤ → ℂ ∈ {ℝ, ℂ})
19 incom 4156 . . . . . . . . 9 (ℝ+ ∩ (-∞(,]0)) = ((-∞(,]0) ∩ ℝ+)
20 dfrp2 13294 . . . . . . . . . 10 + = (0(,)+∞)
2120ineq2i 4164 . . . . . . . . 9 ((-∞(,]0) ∩ ℝ+) = ((-∞(,]0) ∩ (0(,)+∞))
22 mnfxr 11169 . . . . . . . . . . . 12 -∞ ∈ ℝ*
2322a1i 11 . . . . . . . . . . 11 (⊤ → -∞ ∈ ℝ*)
24 0xr 11159 . . . . . . . . . . . 12 0 ∈ ℝ*
2524a1i 11 . . . . . . . . . . 11 (⊤ → 0 ∈ ℝ*)
26 pnfxr 11166 . . . . . . . . . . . 12 +∞ ∈ ℝ*
2726a1i 11 . . . . . . . . . . 11 (⊤ → +∞ ∈ ℝ*)
2823, 25, 27iocioodisjd 42412 . . . . . . . . . 10 (⊤ → ((-∞(,]0) ∩ (0(,)+∞)) = ∅)
2928mptru 1548 . . . . . . . . 9 ((-∞(,]0) ∩ (0(,)+∞)) = ∅
3019, 21, 293eqtri 2758 . . . . . . . 8 (ℝ+ ∩ (-∞(,]0)) = ∅
31 disjdif2 4427 . . . . . . . 8 ((ℝ+ ∩ (-∞(,]0)) = ∅ → (ℝ+ ∖ (-∞(,]0)) = ℝ+)
3230, 31ax-mp 5 . . . . . . 7 (ℝ+ ∖ (-∞(,]0)) = ℝ+
33 rpsscn 42391 . . . . . . . 8 + ⊆ ℂ
34 ssdif 4091 . . . . . . . 8 (ℝ+ ⊆ ℂ → (ℝ+ ∖ (-∞(,]0)) ⊆ (ℂ ∖ (-∞(,]0)))
3533, 34ax-mp 5 . . . . . . 7 (ℝ+ ∖ (-∞(,]0)) ⊆ (ℂ ∖ (-∞(,]0))
3632, 35eqsstrri 3977 . . . . . 6 + ⊆ (ℂ ∖ (-∞(,]0))
3710adantl 481 . . . . . . 7 ((⊤ ∧ 𝑥𝐷) → 𝑥 ≠ 0)
38 sqn0rp 14034 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) → (𝑥↑2) ∈ ℝ+)
397, 37, 38syl2an2 686 . . . . . 6 ((⊤ ∧ 𝑥𝐷) → (𝑥↑2) ∈ ℝ+)
4036, 39sselid 3927 . . . . 5 ((⊤ ∧ 𝑥𝐷) → (𝑥↑2) ∈ (ℂ ∖ (-∞(,]0)))
41 ovexd 7381 . . . . 5 ((⊤ ∧ 𝑥𝐷) → (2 · 𝑥) ∈ V)
42 eldifi 4078 . . . . . . 7 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) → 𝑦 ∈ ℂ)
43 eldifn 4079 . . . . . . . 8 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) → ¬ 𝑦 ∈ (-∞(,]0))
44 mnflt0 13024 . . . . . . . . . . 11 -∞ < 0
45 0le0 12226 . . . . . . . . . . 11 0 ≤ 0
46 elioc1 13287 . . . . . . . . . . . 12 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*) → (0 ∈ (-∞(,]0) ↔ (0 ∈ ℝ* ∧ -∞ < 0 ∧ 0 ≤ 0)))
4722, 24, 46mp2an 692 . . . . . . . . . . 11 (0 ∈ (-∞(,]0) ↔ (0 ∈ ℝ* ∧ -∞ < 0 ∧ 0 ≤ 0))
4824, 44, 45, 47mpbir3an 1342 . . . . . . . . . 10 0 ∈ (-∞(,]0)
49 eleq1 2819 . . . . . . . . . 10 (𝑦 = 0 → (𝑦 ∈ (-∞(,]0) ↔ 0 ∈ (-∞(,]0)))
5048, 49mpbiri 258 . . . . . . . . 9 (𝑦 = 0 → 𝑦 ∈ (-∞(,]0))
5150necon3bi 2954 . . . . . . . 8 𝑦 ∈ (-∞(,]0) → 𝑦 ≠ 0)
5243, 51syl 17 . . . . . . 7 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) → 𝑦 ≠ 0)
5342, 52logcld 26506 . . . . . 6 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) → (log‘𝑦) ∈ ℂ)
5453adantl 481 . . . . 5 ((⊤ ∧ 𝑦 ∈ (ℂ ∖ (-∞(,]0))) → (log‘𝑦) ∈ ℂ)
55 ovexd 7381 . . . . 5 ((⊤ ∧ 𝑦 ∈ (ℂ ∖ (-∞(,]0))) → (1 / 𝑦) ∈ V)
56 recn 11096 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
5756adantl 481 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
5857sqcld 14051 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ) → (𝑥↑2) ∈ ℂ)
59 ovexd 7381 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ) → (2 · (𝑥↑(2 − 1))) ∈ V)
60 eqid 2731 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
61 cnopn 24701 . . . . . . . . 9 ℂ ∈ (TopOpen‘ℂfld)
6261a1i 11 . . . . . . . 8 (⊤ → ℂ ∈ (TopOpen‘ℂfld))
63 ax-resscn 11063 . . . . . . . . . 10 ℝ ⊆ ℂ
64 dfss2 3915 . . . . . . . . . 10 (ℝ ⊆ ℂ ↔ (ℝ ∩ ℂ) = ℝ)
6563, 64mpbi 230 . . . . . . . . 9 (ℝ ∩ ℂ) = ℝ
6665a1i 11 . . . . . . . 8 (⊤ → (ℝ ∩ ℂ) = ℝ)
67 sqcl 14025 . . . . . . . . 9 (𝑥 ∈ ℂ → (𝑥↑2) ∈ ℂ)
6867adantl 481 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → (𝑥↑2) ∈ ℂ)
69 ovexd 7381 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → (2 · (𝑥↑(2 − 1))) ∈ V)
70 2nn 12198 . . . . . . . . 9 2 ∈ ℕ
71 dvexp 25884 . . . . . . . . 9 (2 ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑2))) = (𝑥 ∈ ℂ ↦ (2 · (𝑥↑(2 − 1)))))
7270, 71mp1i 13 . . . . . . . 8 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑2))) = (𝑥 ∈ ℂ ↦ (2 · (𝑥↑(2 − 1)))))
7360, 2, 62, 66, 68, 69, 72dvmptres3 25887 . . . . . . 7 (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ (𝑥↑2))) = (𝑥 ∈ ℝ ↦ (2 · (𝑥↑(2 − 1)))))
747ssriv 3933 . . . . . . . 8 𝐷 ⊆ ℝ
7574a1i 11 . . . . . . 7 (⊤ → 𝐷 ⊆ ℝ)
76 tgioo4 24720 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
77 rehaus 24714 . . . . . . . . . . 11 (topGen‘ran (,)) ∈ Haus
78 0re 11114 . . . . . . . . . . 11 0 ∈ ℝ
79 uniretop 24677 . . . . . . . . . . . 12 ℝ = (topGen‘ran (,))
8079sncld 23286 . . . . . . . . . . 11 (((topGen‘ran (,)) ∈ Haus ∧ 0 ∈ ℝ) → {0} ∈ (Clsd‘(topGen‘ran (,))))
8177, 78, 80mp2an 692 . . . . . . . . . 10 {0} ∈ (Clsd‘(topGen‘ran (,)))
8279cldopn 22946 . . . . . . . . . 10 ({0} ∈ (Clsd‘(topGen‘ran (,))) → (ℝ ∖ {0}) ∈ (topGen‘ran (,)))
8381, 82ax-mp 5 . . . . . . . . 9 (ℝ ∖ {0}) ∈ (topGen‘ran (,))
843, 83eqeltri 2827 . . . . . . . 8 𝐷 ∈ (topGen‘ran (,))
8584a1i 11 . . . . . . 7 (⊤ → 𝐷 ∈ (topGen‘ran (,)))
862, 58, 59, 73, 75, 76, 60, 85dvmptres 25894 . . . . . 6 (⊤ → (ℝ D (𝑥𝐷 ↦ (𝑥↑2))) = (𝑥𝐷 ↦ (2 · (𝑥↑(2 − 1)))))
87 2m1e1 12246 . . . . . . . . . 10 (2 − 1) = 1
8887oveq2i 7357 . . . . . . . . 9 (𝑥↑(2 − 1)) = (𝑥↑1)
898exp1d 14048 . . . . . . . . 9 (𝑥𝐷 → (𝑥↑1) = 𝑥)
9088, 89eqtrid 2778 . . . . . . . 8 (𝑥𝐷 → (𝑥↑(2 − 1)) = 𝑥)
9190oveq2d 7362 . . . . . . 7 (𝑥𝐷 → (2 · (𝑥↑(2 − 1))) = (2 · 𝑥))
9291mpteq2ia 5184 . . . . . 6 (𝑥𝐷 ↦ (2 · (𝑥↑(2 − 1)))) = (𝑥𝐷 ↦ (2 · 𝑥))
9386, 92eqtrdi 2782 . . . . 5 (⊤ → (ℝ D (𝑥𝐷 ↦ (𝑥↑2))) = (𝑥𝐷 ↦ (2 · 𝑥)))
94 logf1o 26500 . . . . . . . . 9 log:(ℂ ∖ {0})–1-1-onto→ran log
95 f1of 6763 . . . . . . . . 9 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log)
9694, 95mp1i 13 . . . . . . . 8 (⊤ → log:(ℂ ∖ {0})⟶ran log)
97 snssi 4757 . . . . . . . . . 10 (0 ∈ (-∞(,]0) → {0} ⊆ (-∞(,]0))
9848, 97ax-mp 5 . . . . . . . . 9 {0} ⊆ (-∞(,]0)
99 sscon 4090 . . . . . . . . 9 ({0} ⊆ (-∞(,]0) → (ℂ ∖ (-∞(,]0)) ⊆ (ℂ ∖ {0}))
10098, 99mp1i 13 . . . . . . . 8 (⊤ → (ℂ ∖ (-∞(,]0)) ⊆ (ℂ ∖ {0}))
10196, 100feqresmpt 6891 . . . . . . 7 (⊤ → (log ↾ (ℂ ∖ (-∞(,]0))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦)))
102101oveq2d 7362 . . . . . 6 (⊤ → (ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) = (ℂ D (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦))))
103 eqid 2731 . . . . . . 7 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
104103dvlog 26587 . . . . . 6 (ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑦))
105102, 104eqtr3di 2781 . . . . 5 (⊤ → (ℂ D (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑦)))
106 fveq2 6822 . . . . 5 (𝑦 = (𝑥↑2) → (log‘𝑦) = (log‘(𝑥↑2)))
107 oveq2 7354 . . . . 5 (𝑦 = (𝑥↑2) → (1 / 𝑦) = (1 / (𝑥↑2)))
1082, 18, 40, 41, 54, 55, 93, 105, 106, 107dvmptco 25903 . . . 4 (⊤ → (ℝ D (𝑥𝐷 ↦ (log‘(𝑥↑2)))) = (𝑥𝐷 ↦ ((1 / (𝑥↑2)) · (2 · 𝑥))))
109 2cnd 12203 . . . 4 (⊤ → 2 ∈ ℂ)
110 2ne0 12229 . . . . 5 2 ≠ 0
111110a1i 11 . . . 4 (⊤ → 2 ≠ 0)
1122, 15, 16, 108, 109, 111dvmptdivc 25896 . . 3 (⊤ → (ℝ D (𝑥𝐷 ↦ ((log‘(𝑥↑2)) / 2))) = (𝑥𝐷 ↦ (((1 / (𝑥↑2)) · (2 · 𝑥)) / 2)))
113112mptru 1548 . 2 (ℝ D (𝑥𝐷 ↦ ((log‘(𝑥↑2)) / 2))) = (𝑥𝐷 ↦ (((1 / (𝑥↑2)) · (2 · 𝑥)) / 2))
1147resqcld 14032 . . . . . . . 8 (𝑥𝐷 → (𝑥↑2) ∈ ℝ)
115114, 13rereccld 11948 . . . . . . 7 (𝑥𝐷 → (1 / (𝑥↑2)) ∈ ℝ)
116115recnd 11140 . . . . . 6 (𝑥𝐷 → (1 / (𝑥↑2)) ∈ ℂ)
117 2cnd 12203 . . . . . 6 (𝑥𝐷 → 2 ∈ ℂ)
118116, 117, 8mul12d 11322 . . . . 5 (𝑥𝐷 → ((1 / (𝑥↑2)) · (2 · 𝑥)) = (2 · ((1 / (𝑥↑2)) · 𝑥)))
119118oveq1d 7361 . . . 4 (𝑥𝐷 → (((1 / (𝑥↑2)) · (2 · 𝑥)) / 2) = ((2 · ((1 / (𝑥↑2)) · 𝑥)) / 2))
120116, 8mulcld 11132 . . . . 5 (𝑥𝐷 → ((1 / (𝑥↑2)) · 𝑥) ∈ ℂ)
121110a1i 11 . . . . 5 (𝑥𝐷 → 2 ≠ 0)
122120, 117, 121divcan3d 11902 . . . 4 (𝑥𝐷 → ((2 · ((1 / (𝑥↑2)) · 𝑥)) / 2) = ((1 / (𝑥↑2)) · 𝑥))
1238sqvald 14050 . . . . . . 7 (𝑥𝐷 → (𝑥↑2) = (𝑥 · 𝑥))
124123oveq2d 7362 . . . . . 6 (𝑥𝐷 → (1 / (𝑥↑2)) = (1 / (𝑥 · 𝑥)))
125124oveq1d 7361 . . . . 5 (𝑥𝐷 → ((1 / (𝑥↑2)) · 𝑥) = ((1 / (𝑥 · 𝑥)) · 𝑥))
1268, 8, 10, 10recdiv2d 11915 . . . . . 6 (𝑥𝐷 → ((1 / 𝑥) / 𝑥) = (1 / (𝑥 · 𝑥)))
127126oveq1d 7361 . . . . 5 (𝑥𝐷 → (((1 / 𝑥) / 𝑥) · 𝑥) = ((1 / (𝑥 · 𝑥)) · 𝑥))
1288, 10reccld 11890 . . . . . 6 (𝑥𝐷 → (1 / 𝑥) ∈ ℂ)
129128, 8, 10divcan1d 11898 . . . . 5 (𝑥𝐷 → (((1 / 𝑥) / 𝑥) · 𝑥) = (1 / 𝑥))
130125, 127, 1293eqtr2d 2772 . . . 4 (𝑥𝐷 → ((1 / (𝑥↑2)) · 𝑥) = (1 / 𝑥))
131119, 122, 1303eqtrd 2770 . . 3 (𝑥𝐷 → (((1 / (𝑥↑2)) · (2 · 𝑥)) / 2) = (1 / 𝑥))
132131mpteq2ia 5184 . 2 (𝑥𝐷 ↦ (((1 / (𝑥↑2)) · (2 · 𝑥)) / 2)) = (𝑥𝐷 ↦ (1 / 𝑥))
133113, 132eqtri 2754 1 (ℝ D (𝑥𝐷 ↦ ((log‘(𝑥↑2)) / 2))) = (𝑥𝐷 ↦ (1 / 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  w3a 1086   = wceq 1541  wtru 1542  wcel 2111  wne 2928  Vcvv 3436  cdif 3894  cin 3896  wss 3897  c0 4280  {csn 4573  {cpr 4575   class class class wbr 5089  cmpt 5170  ran crn 5615  cres 5616  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007   · cmul 11011  +∞cpnf 11143  -∞cmnf 11144  *cxr 11145   < clt 11146  cle 11147  cmin 11344   / cdiv 11774  cn 12125  2c2 12180  +crp 12890  (,)cioo 13245  (,]cioc 13246  cexp 13968  TopOpenctopn 17325  topGenctg 17341  fldccnfld 21291  Clsdccld 22931  Hauscha 23223   D cdv 25791  logclog 26490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-tan 15978  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-t1 23229  df-haus 23230  df-cmp 23302  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-limc 25794  df-dv 25795  df-log 26492
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator