Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  readvrec2 Structured version   Visualization version   GIF version

Theorem readvrec2 42342
Description: The antiderivative of 1/x in real numbers, without using the absolute value function. (Contributed by SN, 1-Oct-2025.)
Hypothesis
Ref Expression
redvabs.d 𝐷 = (ℝ ∖ {0})
Assertion
Ref Expression
readvrec2 (ℝ D (𝑥𝐷 ↦ ((log‘(𝑥↑2)) / 2))) = (𝑥𝐷 ↦ (1 / 𝑥))
Distinct variable group:   𝑥,𝐷

Proof of Theorem readvrec2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 reelprrecn 11136 . . . . 5 ℝ ∈ {ℝ, ℂ}
21a1i 11 . . . 4 (⊤ → ℝ ∈ {ℝ, ℂ})
3 redvabs.d . . . . . . . . . . 11 𝐷 = (ℝ ∖ {0})
43eleq2i 2820 . . . . . . . . . 10 (𝑥𝐷𝑥 ∈ (ℝ ∖ {0}))
5 eldifsn 4746 . . . . . . . . . 10 (𝑥 ∈ (ℝ ∖ {0}) ↔ (𝑥 ∈ ℝ ∧ 𝑥 ≠ 0))
64, 5bitri 275 . . . . . . . . 9 (𝑥𝐷 ↔ (𝑥 ∈ ℝ ∧ 𝑥 ≠ 0))
76simplbi 497 . . . . . . . 8 (𝑥𝐷𝑥 ∈ ℝ)
87recnd 11178 . . . . . . 7 (𝑥𝐷𝑥 ∈ ℂ)
98sqcld 14085 . . . . . 6 (𝑥𝐷 → (𝑥↑2) ∈ ℂ)
106simprbi 496 . . . . . . 7 (𝑥𝐷𝑥 ≠ 0)
11 sqne0 14064 . . . . . . . 8 (𝑥 ∈ ℂ → ((𝑥↑2) ≠ 0 ↔ 𝑥 ≠ 0))
128, 11syl 17 . . . . . . 7 (𝑥𝐷 → ((𝑥↑2) ≠ 0 ↔ 𝑥 ≠ 0))
1310, 12mpbird 257 . . . . . 6 (𝑥𝐷 → (𝑥↑2) ≠ 0)
149, 13logcld 26512 . . . . 5 (𝑥𝐷 → (log‘(𝑥↑2)) ∈ ℂ)
1514adantl 481 . . . 4 ((⊤ ∧ 𝑥𝐷) → (log‘(𝑥↑2)) ∈ ℂ)
16 ovexd 7404 . . . 4 ((⊤ ∧ 𝑥𝐷) → ((1 / (𝑥↑2)) · (2 · 𝑥)) ∈ V)
17 cnelprrecn 11137 . . . . . 6 ℂ ∈ {ℝ, ℂ}
1817a1i 11 . . . . 5 (⊤ → ℂ ∈ {ℝ, ℂ})
19 incom 4168 . . . . . . . . 9 (ℝ+ ∩ (-∞(,]0)) = ((-∞(,]0) ∩ ℝ+)
20 dfrp2 13331 . . . . . . . . . 10 + = (0(,)+∞)
2120ineq2i 4176 . . . . . . . . 9 ((-∞(,]0) ∩ ℝ+) = ((-∞(,]0) ∩ (0(,)+∞))
22 mnfxr 11207 . . . . . . . . . . . 12 -∞ ∈ ℝ*
2322a1i 11 . . . . . . . . . . 11 (⊤ → -∞ ∈ ℝ*)
24 0xr 11197 . . . . . . . . . . . 12 0 ∈ ℝ*
2524a1i 11 . . . . . . . . . . 11 (⊤ → 0 ∈ ℝ*)
26 pnfxr 11204 . . . . . . . . . . . 12 +∞ ∈ ℝ*
2726a1i 11 . . . . . . . . . . 11 (⊤ → +∞ ∈ ℝ*)
2823, 25, 27iocioodisjd 42301 . . . . . . . . . 10 (⊤ → ((-∞(,]0) ∩ (0(,)+∞)) = ∅)
2928mptru 1547 . . . . . . . . 9 ((-∞(,]0) ∩ (0(,)+∞)) = ∅
3019, 21, 293eqtri 2756 . . . . . . . 8 (ℝ+ ∩ (-∞(,]0)) = ∅
31 disjdif2 4439 . . . . . . . 8 ((ℝ+ ∩ (-∞(,]0)) = ∅ → (ℝ+ ∖ (-∞(,]0)) = ℝ+)
3230, 31ax-mp 5 . . . . . . 7 (ℝ+ ∖ (-∞(,]0)) = ℝ+
33 rpsscn 42280 . . . . . . . 8 + ⊆ ℂ
34 ssdif 4103 . . . . . . . 8 (ℝ+ ⊆ ℂ → (ℝ+ ∖ (-∞(,]0)) ⊆ (ℂ ∖ (-∞(,]0)))
3533, 34ax-mp 5 . . . . . . 7 (ℝ+ ∖ (-∞(,]0)) ⊆ (ℂ ∖ (-∞(,]0))
3632, 35eqsstrri 3991 . . . . . 6 + ⊆ (ℂ ∖ (-∞(,]0))
3710adantl 481 . . . . . . 7 ((⊤ ∧ 𝑥𝐷) → 𝑥 ≠ 0)
38 sqn0rp 14068 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) → (𝑥↑2) ∈ ℝ+)
397, 37, 38syl2an2 686 . . . . . 6 ((⊤ ∧ 𝑥𝐷) → (𝑥↑2) ∈ ℝ+)
4036, 39sselid 3941 . . . . 5 ((⊤ ∧ 𝑥𝐷) → (𝑥↑2) ∈ (ℂ ∖ (-∞(,]0)))
41 ovexd 7404 . . . . 5 ((⊤ ∧ 𝑥𝐷) → (2 · 𝑥) ∈ V)
42 eldifi 4090 . . . . . . 7 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) → 𝑦 ∈ ℂ)
43 eldifn 4091 . . . . . . . 8 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) → ¬ 𝑦 ∈ (-∞(,]0))
44 mnflt0 13061 . . . . . . . . . . 11 -∞ < 0
45 0le0 12263 . . . . . . . . . . 11 0 ≤ 0
46 elioc1 13324 . . . . . . . . . . . 12 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*) → (0 ∈ (-∞(,]0) ↔ (0 ∈ ℝ* ∧ -∞ < 0 ∧ 0 ≤ 0)))
4722, 24, 46mp2an 692 . . . . . . . . . . 11 (0 ∈ (-∞(,]0) ↔ (0 ∈ ℝ* ∧ -∞ < 0 ∧ 0 ≤ 0))
4824, 44, 45, 47mpbir3an 1342 . . . . . . . . . 10 0 ∈ (-∞(,]0)
49 eleq1 2816 . . . . . . . . . 10 (𝑦 = 0 → (𝑦 ∈ (-∞(,]0) ↔ 0 ∈ (-∞(,]0)))
5048, 49mpbiri 258 . . . . . . . . 9 (𝑦 = 0 → 𝑦 ∈ (-∞(,]0))
5150necon3bi 2951 . . . . . . . 8 𝑦 ∈ (-∞(,]0) → 𝑦 ≠ 0)
5243, 51syl 17 . . . . . . 7 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) → 𝑦 ≠ 0)
5342, 52logcld 26512 . . . . . 6 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) → (log‘𝑦) ∈ ℂ)
5453adantl 481 . . . . 5 ((⊤ ∧ 𝑦 ∈ (ℂ ∖ (-∞(,]0))) → (log‘𝑦) ∈ ℂ)
55 ovexd 7404 . . . . 5 ((⊤ ∧ 𝑦 ∈ (ℂ ∖ (-∞(,]0))) → (1 / 𝑦) ∈ V)
56 recn 11134 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
5756adantl 481 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
5857sqcld 14085 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ) → (𝑥↑2) ∈ ℂ)
59 ovexd 7404 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ) → (2 · (𝑥↑(2 − 1))) ∈ V)
60 eqid 2729 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
61 cnopn 24707 . . . . . . . . 9 ℂ ∈ (TopOpen‘ℂfld)
6261a1i 11 . . . . . . . 8 (⊤ → ℂ ∈ (TopOpen‘ℂfld))
63 ax-resscn 11101 . . . . . . . . . 10 ℝ ⊆ ℂ
64 dfss2 3929 . . . . . . . . . 10 (ℝ ⊆ ℂ ↔ (ℝ ∩ ℂ) = ℝ)
6563, 64mpbi 230 . . . . . . . . 9 (ℝ ∩ ℂ) = ℝ
6665a1i 11 . . . . . . . 8 (⊤ → (ℝ ∩ ℂ) = ℝ)
67 sqcl 14059 . . . . . . . . 9 (𝑥 ∈ ℂ → (𝑥↑2) ∈ ℂ)
6867adantl 481 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → (𝑥↑2) ∈ ℂ)
69 ovexd 7404 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℂ) → (2 · (𝑥↑(2 − 1))) ∈ V)
70 2nn 12235 . . . . . . . . 9 2 ∈ ℕ
71 dvexp 25890 . . . . . . . . 9 (2 ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑2))) = (𝑥 ∈ ℂ ↦ (2 · (𝑥↑(2 − 1)))))
7270, 71mp1i 13 . . . . . . . 8 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑2))) = (𝑥 ∈ ℂ ↦ (2 · (𝑥↑(2 − 1)))))
7360, 2, 62, 66, 68, 69, 72dvmptres3 25893 . . . . . . 7 (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ (𝑥↑2))) = (𝑥 ∈ ℝ ↦ (2 · (𝑥↑(2 − 1)))))
747ssriv 3947 . . . . . . . 8 𝐷 ⊆ ℝ
7574a1i 11 . . . . . . 7 (⊤ → 𝐷 ⊆ ℝ)
76 tgioo4 24726 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
77 rehaus 24720 . . . . . . . . . . 11 (topGen‘ran (,)) ∈ Haus
78 0re 11152 . . . . . . . . . . 11 0 ∈ ℝ
79 uniretop 24683 . . . . . . . . . . . 12 ℝ = (topGen‘ran (,))
8079sncld 23291 . . . . . . . . . . 11 (((topGen‘ran (,)) ∈ Haus ∧ 0 ∈ ℝ) → {0} ∈ (Clsd‘(topGen‘ran (,))))
8177, 78, 80mp2an 692 . . . . . . . . . 10 {0} ∈ (Clsd‘(topGen‘ran (,)))
8279cldopn 22951 . . . . . . . . . 10 ({0} ∈ (Clsd‘(topGen‘ran (,))) → (ℝ ∖ {0}) ∈ (topGen‘ran (,)))
8381, 82ax-mp 5 . . . . . . . . 9 (ℝ ∖ {0}) ∈ (topGen‘ran (,))
843, 83eqeltri 2824 . . . . . . . 8 𝐷 ∈ (topGen‘ran (,))
8584a1i 11 . . . . . . 7 (⊤ → 𝐷 ∈ (topGen‘ran (,)))
862, 58, 59, 73, 75, 76, 60, 85dvmptres 25900 . . . . . 6 (⊤ → (ℝ D (𝑥𝐷 ↦ (𝑥↑2))) = (𝑥𝐷 ↦ (2 · (𝑥↑(2 − 1)))))
87 2m1e1 12283 . . . . . . . . . 10 (2 − 1) = 1
8887oveq2i 7380 . . . . . . . . 9 (𝑥↑(2 − 1)) = (𝑥↑1)
898exp1d 14082 . . . . . . . . 9 (𝑥𝐷 → (𝑥↑1) = 𝑥)
9088, 89eqtrid 2776 . . . . . . . 8 (𝑥𝐷 → (𝑥↑(2 − 1)) = 𝑥)
9190oveq2d 7385 . . . . . . 7 (𝑥𝐷 → (2 · (𝑥↑(2 − 1))) = (2 · 𝑥))
9291mpteq2ia 5197 . . . . . 6 (𝑥𝐷 ↦ (2 · (𝑥↑(2 − 1)))) = (𝑥𝐷 ↦ (2 · 𝑥))
9386, 92eqtrdi 2780 . . . . 5 (⊤ → (ℝ D (𝑥𝐷 ↦ (𝑥↑2))) = (𝑥𝐷 ↦ (2 · 𝑥)))
94 logf1o 26506 . . . . . . . . 9 log:(ℂ ∖ {0})–1-1-onto→ran log
95 f1of 6782 . . . . . . . . 9 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log)
9694, 95mp1i 13 . . . . . . . 8 (⊤ → log:(ℂ ∖ {0})⟶ran log)
97 snssi 4768 . . . . . . . . . 10 (0 ∈ (-∞(,]0) → {0} ⊆ (-∞(,]0))
9848, 97ax-mp 5 . . . . . . . . 9 {0} ⊆ (-∞(,]0)
99 sscon 4102 . . . . . . . . 9 ({0} ⊆ (-∞(,]0) → (ℂ ∖ (-∞(,]0)) ⊆ (ℂ ∖ {0}))
10098, 99mp1i 13 . . . . . . . 8 (⊤ → (ℂ ∖ (-∞(,]0)) ⊆ (ℂ ∖ {0}))
10196, 100feqresmpt 6912 . . . . . . 7 (⊤ → (log ↾ (ℂ ∖ (-∞(,]0))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦)))
102101oveq2d 7385 . . . . . 6 (⊤ → (ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) = (ℂ D (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦))))
103 eqid 2729 . . . . . . 7 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
104103dvlog 26593 . . . . . 6 (ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑦))
105102, 104eqtr3di 2779 . . . . 5 (⊤ → (ℂ D (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑦)))
106 fveq2 6840 . . . . 5 (𝑦 = (𝑥↑2) → (log‘𝑦) = (log‘(𝑥↑2)))
107 oveq2 7377 . . . . 5 (𝑦 = (𝑥↑2) → (1 / 𝑦) = (1 / (𝑥↑2)))
1082, 18, 40, 41, 54, 55, 93, 105, 106, 107dvmptco 25909 . . . 4 (⊤ → (ℝ D (𝑥𝐷 ↦ (log‘(𝑥↑2)))) = (𝑥𝐷 ↦ ((1 / (𝑥↑2)) · (2 · 𝑥))))
109 2cnd 12240 . . . 4 (⊤ → 2 ∈ ℂ)
110 2ne0 12266 . . . . 5 2 ≠ 0
111110a1i 11 . . . 4 (⊤ → 2 ≠ 0)
1122, 15, 16, 108, 109, 111dvmptdivc 25902 . . 3 (⊤ → (ℝ D (𝑥𝐷 ↦ ((log‘(𝑥↑2)) / 2))) = (𝑥𝐷 ↦ (((1 / (𝑥↑2)) · (2 · 𝑥)) / 2)))
113112mptru 1547 . 2 (ℝ D (𝑥𝐷 ↦ ((log‘(𝑥↑2)) / 2))) = (𝑥𝐷 ↦ (((1 / (𝑥↑2)) · (2 · 𝑥)) / 2))
1147resqcld 14066 . . . . . . . 8 (𝑥𝐷 → (𝑥↑2) ∈ ℝ)
115114, 13rereccld 11985 . . . . . . 7 (𝑥𝐷 → (1 / (𝑥↑2)) ∈ ℝ)
116115recnd 11178 . . . . . 6 (𝑥𝐷 → (1 / (𝑥↑2)) ∈ ℂ)
117 2cnd 12240 . . . . . 6 (𝑥𝐷 → 2 ∈ ℂ)
118116, 117, 8mul12d 11359 . . . . 5 (𝑥𝐷 → ((1 / (𝑥↑2)) · (2 · 𝑥)) = (2 · ((1 / (𝑥↑2)) · 𝑥)))
119118oveq1d 7384 . . . 4 (𝑥𝐷 → (((1 / (𝑥↑2)) · (2 · 𝑥)) / 2) = ((2 · ((1 / (𝑥↑2)) · 𝑥)) / 2))
120116, 8mulcld 11170 . . . . 5 (𝑥𝐷 → ((1 / (𝑥↑2)) · 𝑥) ∈ ℂ)
121110a1i 11 . . . . 5 (𝑥𝐷 → 2 ≠ 0)
122120, 117, 121divcan3d 11939 . . . 4 (𝑥𝐷 → ((2 · ((1 / (𝑥↑2)) · 𝑥)) / 2) = ((1 / (𝑥↑2)) · 𝑥))
1238sqvald 14084 . . . . . . 7 (𝑥𝐷 → (𝑥↑2) = (𝑥 · 𝑥))
124123oveq2d 7385 . . . . . 6 (𝑥𝐷 → (1 / (𝑥↑2)) = (1 / (𝑥 · 𝑥)))
125124oveq1d 7384 . . . . 5 (𝑥𝐷 → ((1 / (𝑥↑2)) · 𝑥) = ((1 / (𝑥 · 𝑥)) · 𝑥))
1268, 8, 10, 10recdiv2d 11952 . . . . . 6 (𝑥𝐷 → ((1 / 𝑥) / 𝑥) = (1 / (𝑥 · 𝑥)))
127126oveq1d 7384 . . . . 5 (𝑥𝐷 → (((1 / 𝑥) / 𝑥) · 𝑥) = ((1 / (𝑥 · 𝑥)) · 𝑥))
1288, 10reccld 11927 . . . . . 6 (𝑥𝐷 → (1 / 𝑥) ∈ ℂ)
129128, 8, 10divcan1d 11935 . . . . 5 (𝑥𝐷 → (((1 / 𝑥) / 𝑥) · 𝑥) = (1 / 𝑥))
130125, 127, 1293eqtr2d 2770 . . . 4 (𝑥𝐷 → ((1 / (𝑥↑2)) · 𝑥) = (1 / 𝑥))
131119, 122, 1303eqtrd 2768 . . 3 (𝑥𝐷 → (((1 / (𝑥↑2)) · (2 · 𝑥)) / 2) = (1 / 𝑥))
132131mpteq2ia 5197 . 2 (𝑥𝐷 ↦ (((1 / (𝑥↑2)) · (2 · 𝑥)) / 2)) = (𝑥𝐷 ↦ (1 / 𝑥))
133113, 132eqtri 2752 1 (ℝ D (𝑥𝐷 ↦ ((log‘(𝑥↑2)) / 2))) = (𝑥𝐷 ↦ (1 / 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2109  wne 2925  Vcvv 3444  cdif 3908  cin 3910  wss 3911  c0 4292  {csn 4585  {cpr 4587   class class class wbr 5102  cmpt 5183  ran crn 5632  cres 5633  wf 6495  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   · cmul 11049  +∞cpnf 11181  -∞cmnf 11182  *cxr 11183   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cn 12162  2c2 12217  +crp 12927  (,)cioo 13282  (,]cioc 13283  cexp 14002  TopOpenctopn 17360  topGenctg 17376  fldccnfld 21296  Clsdccld 22936  Hauscha 23228   D cdv 25797  logclog 26496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-tan 16013  df-pi 16014  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-mulg 18982  df-cntz 19231  df-cmn 19696  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-lp 23056  df-perf 23057  df-cn 23147  df-cnp 23148  df-t1 23234  df-haus 23235  df-cmp 23307  df-tx 23482  df-hmeo 23675  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-xms 24241  df-ms 24242  df-tms 24243  df-cncf 24804  df-limc 25800  df-dv 25801  df-log 26498
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator