Mathbox for Rohan Ridenour < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grumnudlem Structured version   Visualization version   GIF version

Theorem grumnudlem 40991
 Description: Lemma for grumnud 40992. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
grumnudlem.1 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
grumnudlem.2 (𝜑𝐺 ∈ Univ)
grumnudlem.3 𝐹 = ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺))
grumnudlem.4 ((𝑖𝐺𝐺) → (𝑖𝐹 ↔ ∃𝑗( 𝑗 = 𝑗𝑓𝑖𝑗)))
grumnudlem.5 (( ∈ (𝐹 Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) → ∃𝑢𝑓 (𝑖𝑢 𝑢 ∈ (𝐹 Coll 𝑧)))
Assertion
Ref Expression
grumnudlem (𝜑𝐺𝑀)
Distinct variable groups:   𝜑,𝑧,𝑓,,𝑗   𝑧,𝐺   𝑓,,𝑗,𝐺   𝜑,𝑓,,𝑖,𝑗   𝑢,,𝑖,𝑗,𝐹   𝑧,𝑖,𝑘,𝑚,𝑛,𝑞,𝑝,𝑙,𝑓,𝐺   𝑧,𝑢,𝑟,𝑓,𝑘,𝑚,𝑛,𝐺,𝑝,𝑙,𝑖
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑏,𝑐,𝑑,𝑙)   𝐹(𝑧,𝑓,𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑏,𝑐,𝑑,𝑙)   𝐺(𝑏,𝑐,𝑑)   𝑀(𝑧,𝑢,𝑓,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑏,𝑐,𝑑,𝑙)

Proof of Theorem grumnudlem
Dummy variables 𝑎 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grumnudlem.2 . . . . . . . 8 (𝜑𝐺 ∈ Univ)
2 gruss 10207 . . . . . . . 8 ((𝐺 ∈ Univ ∧ 𝑧𝐺𝑎𝑧) → 𝑎𝐺)
31, 2syl3an1 1160 . . . . . . 7 ((𝜑𝑧𝐺𝑎𝑧) → 𝑎𝐺)
433expia 1118 . . . . . 6 ((𝜑𝑧𝐺) → (𝑎𝑧𝑎𝐺))
54alrimiv 1928 . . . . 5 ((𝜑𝑧𝐺) → ∀𝑎(𝑎𝑧𝑎𝐺))
6 pwss 4522 . . . . 5 (𝒫 𝑧𝐺 ↔ ∀𝑎(𝑎𝑧𝑎𝐺))
75, 6sylibr 237 . . . 4 ((𝜑𝑧𝐺) → 𝒫 𝑧𝐺)
8 ssun1 4099 . . . . . . . . 9 𝒫 𝑧 ⊆ (𝒫 𝑧 (𝐹 Coll 𝑧))
9 simp3 1135 . . . . . . . . 9 ((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) → 𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧)))
108, 9sseqtrrid 3968 . . . . . . . 8 ((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) → 𝒫 𝑧𝑤)
11 simp1l3 1265 . . . . . . . . . . 11 ((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) → 𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧)))
12 simp1r 1195 . . . . . . . . . . . . . 14 ((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) → 𝑖𝑧)
13 simpr 488 . . . . . . . . . . . . . . . . . . . . . 22 (( = 𝑣𝑗 = 𝑣) → 𝑗 = 𝑣)
1413unieqd 4814 . . . . . . . . . . . . . . . . . . . . 21 (( = 𝑣𝑗 = 𝑣) → 𝑗 = 𝑣)
15 simpl 486 . . . . . . . . . . . . . . . . . . . . 21 (( = 𝑣𝑗 = 𝑣) → = 𝑣)
1614, 15eqtr4d 2836 . . . . . . . . . . . . . . . . . . . 20 (( = 𝑣𝑗 = 𝑣) → 𝑗 = )
1716adantll 713 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) ∧ = 𝑣) ∧ 𝑗 = 𝑣) → 𝑗 = )
18 simpr 488 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) ∧ = 𝑣) ∧ 𝑗 = 𝑣) → 𝑗 = 𝑣)
19 simpll3 1211 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) ∧ = 𝑣) ∧ 𝑗 = 𝑣) → (𝑖𝑣𝑣𝑓))
2019simprd 499 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) ∧ = 𝑣) ∧ 𝑗 = 𝑣) → 𝑣𝑓)
2118, 20eqeltrd 2890 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) ∧ = 𝑣) ∧ 𝑗 = 𝑣) → 𝑗𝑓)
2219simpld 498 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) ∧ = 𝑣) ∧ 𝑗 = 𝑣) → 𝑖𝑣)
2322, 18eleqtrrd 2893 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) ∧ = 𝑣) ∧ 𝑗 = 𝑣) → 𝑖𝑗)
2417, 21, 233jca 1125 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) ∧ = 𝑣) ∧ 𝑗 = 𝑣) → ( 𝑗 = 𝑗𝑓𝑖𝑗))
25 simpl2 1189 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) ∧ = 𝑣) → 𝑣𝐺)
2624, 25rr-spce 40908 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) ∧ = 𝑣) → ∃𝑗( 𝑗 = 𝑗𝑓𝑖𝑗))
27 simp1l1 1263 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) → 𝜑)
2827, 1syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) → 𝐺 ∈ Univ)
29 simp2 1134 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) → 𝑣𝐺)
30 gruuni 10211 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Univ ∧ 𝑣𝐺) → 𝑣𝐺)
3128, 29, 30syl2anc 587 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) → 𝑣𝐺)
3226, 31rspcime 3575 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) → ∃𝐺𝑗( 𝑗 = 𝑗𝑓𝑖𝑗))
33 simpl1 1188 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) → 𝜑)
3433, 1syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) → 𝐺 ∈ Univ)
35 simpl2 1189 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) → 𝑧𝐺)
36 simpr 488 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) → 𝑖𝑧)
37 gruel 10214 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ Univ ∧ 𝑧𝐺𝑖𝑧) → 𝑖𝐺)
3834, 35, 36, 37syl3anc 1368 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) → 𝑖𝐺)
39383ad2ant1 1130 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) → 𝑖𝐺)
40 grumnudlem.4 . . . . . . . . . . . . . . . . . 18 ((𝑖𝐺𝐺) → (𝑖𝐹 ↔ ∃𝑗( 𝑗 = 𝑗𝑓𝑖𝑗)))
4139, 40sylan 583 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) ∧ 𝐺) → (𝑖𝐹 ↔ ∃𝑗( 𝑗 = 𝑗𝑓𝑖𝑗)))
4241rexbidva 3255 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) → (∃𝐺 𝑖𝐹 ↔ ∃𝐺𝑗( 𝑗 = 𝑗𝑓𝑖𝑗)))
4332, 42mpbird 260 . . . . . . . . . . . . . . 15 ((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) → ∃𝐺 𝑖𝐹)
44 rexex 3203 . . . . . . . . . . . . . . 15 (∃𝐺 𝑖𝐹 → ∃ 𝑖𝐹)
4543, 44syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) → ∃ 𝑖𝐹)
4612, 45cpcoll2d 40965 . . . . . . . . . . . . 13 ((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) → ∃ ∈ (𝐹 Coll 𝑧)𝑖𝐹)
4728adantr 484 . . . . . . . . . . . . . . . 16 (((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) ∧ ∈ (𝐹 Coll 𝑧)) → 𝐺 ∈ Univ)
48353ad2ant1 1130 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) → 𝑧𝐺)
4948adantr 484 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) ∧ ∈ (𝐹 Coll 𝑧)) → 𝑧𝐺)
501adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝐺) → 𝐺 ∈ Univ)
51 grumnudlem.3 . . . . . . . . . . . . . . . . . . . 20 𝐹 = ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺))
52 inss2 4156 . . . . . . . . . . . . . . . . . . . 20 ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) ⊆ (𝐺 × 𝐺)
5351, 52eqsstri 3949 . . . . . . . . . . . . . . . . . . 19 𝐹 ⊆ (𝐺 × 𝐺)
5453a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝐺) → 𝐹 ⊆ (𝐺 × 𝐺))
55 simpr 488 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝐺) → 𝑧𝐺)
5650, 54, 55grucollcld 40966 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝐺) → (𝐹 Coll 𝑧) ∈ 𝐺)
5727, 49, 56syl2an2r 684 . . . . . . . . . . . . . . . 16 (((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) ∧ ∈ (𝐹 Coll 𝑧)) → (𝐹 Coll 𝑧) ∈ 𝐺)
58 simpr 488 . . . . . . . . . . . . . . . 16 (((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) ∧ ∈ (𝐹 Coll 𝑧)) → ∈ (𝐹 Coll 𝑧))
59 gruel 10214 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Univ ∧ (𝐹 Coll 𝑧) ∈ 𝐺 ∈ (𝐹 Coll 𝑧)) → 𝐺)
6047, 57, 58, 59syl3anc 1368 . . . . . . . . . . . . . . 15 (((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) ∧ ∈ (𝐹 Coll 𝑧)) → 𝐺)
6139, 60, 40syl2an2r 684 . . . . . . . . . . . . . 14 (((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) ∧ ∈ (𝐹 Coll 𝑧)) → (𝑖𝐹 ↔ ∃𝑗( 𝑗 = 𝑗𝑓𝑖𝑗)))
6261rexbidva 3255 . . . . . . . . . . . . 13 ((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) → (∃ ∈ (𝐹 Coll 𝑧)𝑖𝐹 ↔ ∃ ∈ (𝐹 Coll 𝑧)∃𝑗( 𝑗 = 𝑗𝑓𝑖𝑗)))
6346, 62mpbid 235 . . . . . . . . . . . 12 ((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) → ∃ ∈ (𝐹 Coll 𝑧)∃𝑗( 𝑗 = 𝑗𝑓𝑖𝑗))
64 rexcom4 3212 . . . . . . . . . . . . 13 (∃ ∈ (𝐹 Coll 𝑧)∃𝑗( 𝑗 = 𝑗𝑓𝑖𝑗) ↔ ∃𝑗 ∈ (𝐹 Coll 𝑧)( 𝑗 = 𝑗𝑓𝑖𝑗))
65 grumnudlem.5 . . . . . . . . . . . . . . 15 (( ∈ (𝐹 Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) → ∃𝑢𝑓 (𝑖𝑢 𝑢 ∈ (𝐹 Coll 𝑧)))
6665rexlimiva 3240 . . . . . . . . . . . . . 14 (∃ ∈ (𝐹 Coll 𝑧)( 𝑗 = 𝑗𝑓𝑖𝑗) → ∃𝑢𝑓 (𝑖𝑢 𝑢 ∈ (𝐹 Coll 𝑧)))
6766exlimiv 1931 . . . . . . . . . . . . 13 (∃𝑗 ∈ (𝐹 Coll 𝑧)( 𝑗 = 𝑗𝑓𝑖𝑗) → ∃𝑢𝑓 (𝑖𝑢 𝑢 ∈ (𝐹 Coll 𝑧)))
6864, 67sylbi 220 . . . . . . . . . . . 12 (∃ ∈ (𝐹 Coll 𝑧)∃𝑗( 𝑗 = 𝑗𝑓𝑖𝑗) → ∃𝑢𝑓 (𝑖𝑢 𝑢 ∈ (𝐹 Coll 𝑧)))
6963, 68syl 17 . . . . . . . . . . 11 ((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) → ∃𝑢𝑓 (𝑖𝑢 𝑢 ∈ (𝐹 Coll 𝑧)))
70 elssuni 4830 . . . . . . . . . . . . . . . . 17 ( 𝑢 ∈ (𝐹 Coll 𝑧) → 𝑢 (𝐹 Coll 𝑧))
71 ssun2 4100 . . . . . . . . . . . . . . . . 17 (𝐹 Coll 𝑧) ⊆ (𝒫 𝑧 (𝐹 Coll 𝑧))
7270, 71sstrdi 3927 . . . . . . . . . . . . . . . 16 ( 𝑢 ∈ (𝐹 Coll 𝑧) → 𝑢 ⊆ (𝒫 𝑧 (𝐹 Coll 𝑧)))
7372adantl 485 . . . . . . . . . . . . . . 15 ((𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧)) ∧ 𝑢 ∈ (𝐹 Coll 𝑧)) → 𝑢 ⊆ (𝒫 𝑧 (𝐹 Coll 𝑧)))
74 simpl 486 . . . . . . . . . . . . . . 15 ((𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧)) ∧ 𝑢 ∈ (𝐹 Coll 𝑧)) → 𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧)))
7573, 74sseqtrrd 3956 . . . . . . . . . . . . . 14 ((𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧)) ∧ 𝑢 ∈ (𝐹 Coll 𝑧)) → 𝑢𝑤)
7675ex 416 . . . . . . . . . . . . 13 (𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧)) → ( 𝑢 ∈ (𝐹 Coll 𝑧) → 𝑢𝑤))
7776anim2d 614 . . . . . . . . . . . 12 (𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧)) → ((𝑖𝑢 𝑢 ∈ (𝐹 Coll 𝑧)) → (𝑖𝑢 𝑢𝑤)))
7877reximdv 3232 . . . . . . . . . . 11 (𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧)) → (∃𝑢𝑓 (𝑖𝑢 𝑢 ∈ (𝐹 Coll 𝑧)) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤)))
7911, 69, 78sylc 65 . . . . . . . . . 10 ((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))
8079rexlimdv3a 3245 . . . . . . . . 9 (((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) → (∃𝑣𝐺 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤)))
8180ralrimiva 3149 . . . . . . . 8 ((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) → ∀𝑖𝑧 (∃𝑣𝐺 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤)))
8210, 81jca 515 . . . . . . 7 ((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) → (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝐺 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))))
83823expa 1115 . . . . . 6 (((𝜑𝑧𝐺) ∧ 𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) → (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝐺 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))))
84 grupw 10206 . . . . . . . 8 ((𝐺 ∈ Univ ∧ 𝑧𝐺) → 𝒫 𝑧𝐺)
851, 84sylan 583 . . . . . . 7 ((𝜑𝑧𝐺) → 𝒫 𝑧𝐺)
86 gruuni 10211 . . . . . . . 8 ((𝐺 ∈ Univ ∧ (𝐹 Coll 𝑧) ∈ 𝐺) → (𝐹 Coll 𝑧) ∈ 𝐺)
871, 56, 86syl2an2r 684 . . . . . . 7 ((𝜑𝑧𝐺) → (𝐹 Coll 𝑧) ∈ 𝐺)
88 gruun 10217 . . . . . . 7 ((𝐺 ∈ Univ ∧ 𝒫 𝑧𝐺 (𝐹 Coll 𝑧) ∈ 𝐺) → (𝒫 𝑧 (𝐹 Coll 𝑧)) ∈ 𝐺)
8950, 85, 87, 88syl3anc 1368 . . . . . 6 ((𝜑𝑧𝐺) → (𝒫 𝑧 (𝐹 Coll 𝑧)) ∈ 𝐺)
9083, 89rspcime 3575 . . . . 5 ((𝜑𝑧𝐺) → ∃𝑤𝐺 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝐺 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))))
9190alrimiv 1928 . . . 4 ((𝜑𝑧𝐺) → ∀𝑓𝑤𝐺 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝐺 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))))
927, 91jca 515 . . 3 ((𝜑𝑧𝐺) → (𝒫 𝑧𝐺 ∧ ∀𝑓𝑤𝐺 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝐺 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤)))))
9392ralrimiva 3149 . 2 (𝜑 → ∀𝑧𝐺 (𝒫 𝑧𝐺 ∧ ∀𝑓𝑤𝐺 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝐺 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤)))))
94 grumnudlem.1 . . . 4 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
9594ismnu 40967 . . 3 (𝐺 ∈ Univ → (𝐺𝑀 ↔ ∀𝑧𝐺 (𝒫 𝑧𝐺 ∧ ∀𝑓𝑤𝐺 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝐺 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))))))
961, 95syl 17 . 2 (𝜑 → (𝐺𝑀 ↔ ∀𝑧𝐺 (𝒫 𝑧𝐺 ∧ ∀𝑓𝑤𝐺 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝐺 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))))))
9793, 96mpbird 260 1 (𝜑𝐺𝑀)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084  ∀wal 1536   = wceq 1538  ∃wex 1781   ∈ wcel 2111  {cab 2776  ∀wral 3106  ∃wrex 3107   ∪ cun 3879   ∩ cin 3880   ⊆ wss 3881  𝒫 cpw 4497  ∪ cuni 4800   class class class wbr 5030  {copab 5092   × cxp 5517  Univcgru 10201   Coll ccoll 40956 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-reg 9040  ax-inf2 9088  ax-ac2 9874 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-tc 9163  df-r1 9177  df-rank 9178  df-card 9352  df-cf 9354  df-acn 9355  df-ac 9527  df-wina 10095  df-ina 10096  df-gru 10202  df-scott 40942  df-coll 40957 This theorem is referenced by:  grumnud  40992
 Copyright terms: Public domain W3C validator