| Step | Hyp | Ref
| Expression |
| 1 | | grumnudlem.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ Univ) |
| 2 | | gruss 10810 |
. . . . . . . 8
⊢ ((𝐺 ∈ Univ ∧ 𝑧 ∈ 𝐺 ∧ 𝑎 ⊆ 𝑧) → 𝑎 ∈ 𝐺) |
| 3 | 1, 2 | syl3an1 1163 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑎 ⊆ 𝑧) → 𝑎 ∈ 𝐺) |
| 4 | 3 | 3expia 1121 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺) → (𝑎 ⊆ 𝑧 → 𝑎 ∈ 𝐺)) |
| 5 | 4 | alrimiv 1927 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺) → ∀𝑎(𝑎 ⊆ 𝑧 → 𝑎 ∈ 𝐺)) |
| 6 | | pwss 4598 |
. . . . 5
⊢
(𝒫 𝑧 ⊆
𝐺 ↔ ∀𝑎(𝑎 ⊆ 𝑧 → 𝑎 ∈ 𝐺)) |
| 7 | 5, 6 | sylibr 234 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺) → 𝒫 𝑧 ⊆ 𝐺) |
| 8 | | ssun1 4153 |
. . . . . . . . 9
⊢ 𝒫
𝑧 ⊆ (𝒫 𝑧 ∪ ∪ (𝐹
Coll 𝑧)) |
| 9 | | simp3 1138 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) → 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) |
| 10 | 8, 9 | sseqtrrid 4002 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) → 𝒫 𝑧 ⊆ 𝑤) |
| 11 | | simp1l3 1269 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) |
| 12 | | simp1r 1199 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → 𝑖 ∈ 𝑧) |
| 13 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((ℎ = ∪
𝑣 ∧ 𝑗 = 𝑣) → 𝑗 = 𝑣) |
| 14 | 13 | unieqd 4896 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((ℎ = ∪
𝑣 ∧ 𝑗 = 𝑣) → ∪ 𝑗 = ∪
𝑣) |
| 15 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((ℎ = ∪
𝑣 ∧ 𝑗 = 𝑣) → ℎ = ∪ 𝑣) |
| 16 | 14, 15 | eqtr4d 2773 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((ℎ = ∪
𝑣 ∧ 𝑗 = 𝑣) → ∪ 𝑗 = ℎ) |
| 17 | 16 | adantll 714 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ = ∪ 𝑣) ∧ 𝑗 = 𝑣) → ∪ 𝑗 = ℎ) |
| 18 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ = ∪ 𝑣) ∧ 𝑗 = 𝑣) → 𝑗 = 𝑣) |
| 19 | | simpll3 1215 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ = ∪ 𝑣) ∧ 𝑗 = 𝑣) → (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) |
| 20 | 19 | simprd 495 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ = ∪ 𝑣) ∧ 𝑗 = 𝑣) → 𝑣 ∈ 𝑓) |
| 21 | 18, 20 | eqeltrd 2834 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ = ∪ 𝑣) ∧ 𝑗 = 𝑣) → 𝑗 ∈ 𝑓) |
| 22 | 19 | simpld 494 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ = ∪ 𝑣) ∧ 𝑗 = 𝑣) → 𝑖 ∈ 𝑣) |
| 23 | 22, 18 | eleqtrrd 2837 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ = ∪ 𝑣) ∧ 𝑗 = 𝑣) → 𝑖 ∈ 𝑗) |
| 24 | 17, 21, 23 | 3jca 1128 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ = ∪ 𝑣) ∧ 𝑗 = 𝑣) → (∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) |
| 25 | | simpl2 1193 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ = ∪ 𝑣) → 𝑣 ∈ 𝐺) |
| 26 | 24, 25 | rr-spce 44228 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ = ∪ 𝑣) → ∃𝑗(∪
𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) |
| 27 | | simp1l1 1267 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → 𝜑) |
| 28 | 27, 1 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → 𝐺 ∈ Univ) |
| 29 | | simp2 1137 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → 𝑣 ∈ 𝐺) |
| 30 | | gruuni 10814 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺 ∈ Univ ∧ 𝑣 ∈ 𝐺) → ∪ 𝑣 ∈ 𝐺) |
| 31 | 28, 29, 30 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → ∪ 𝑣 ∈ 𝐺) |
| 32 | 26, 31 | rspcime 3606 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → ∃ℎ ∈ 𝐺 ∃𝑗(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) |
| 33 | | simpl1 1192 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) → 𝜑) |
| 34 | 33, 1 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) → 𝐺 ∈ Univ) |
| 35 | | simpl2 1193 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) → 𝑧 ∈ 𝐺) |
| 36 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) → 𝑖 ∈ 𝑧) |
| 37 | | gruel 10817 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺 ∈ Univ ∧ 𝑧 ∈ 𝐺 ∧ 𝑖 ∈ 𝑧) → 𝑖 ∈ 𝐺) |
| 38 | 34, 35, 36, 37 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) → 𝑖 ∈ 𝐺) |
| 39 | 38 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → 𝑖 ∈ 𝐺) |
| 40 | | grumnudlem.4 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ 𝐺 ∧ ℎ ∈ 𝐺) → (𝑖𝐹ℎ ↔ ∃𝑗(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗))) |
| 41 | 39, 40 | sylan 580 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ ∈ 𝐺) → (𝑖𝐹ℎ ↔ ∃𝑗(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗))) |
| 42 | 41 | rexbidva 3162 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → (∃ℎ ∈ 𝐺 𝑖𝐹ℎ ↔ ∃ℎ ∈ 𝐺 ∃𝑗(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗))) |
| 43 | 32, 42 | mpbird 257 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → ∃ℎ ∈ 𝐺 𝑖𝐹ℎ) |
| 44 | | rexex 3066 |
. . . . . . . . . . . . . . 15
⊢
(∃ℎ ∈
𝐺 𝑖𝐹ℎ → ∃ℎ 𝑖𝐹ℎ) |
| 45 | 43, 44 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → ∃ℎ 𝑖𝐹ℎ) |
| 46 | 12, 45 | cpcoll2d 44283 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → ∃ℎ ∈ (𝐹 Coll 𝑧)𝑖𝐹ℎ) |
| 47 | 28 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ ∈ (𝐹 Coll 𝑧)) → 𝐺 ∈ Univ) |
| 48 | 35 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → 𝑧 ∈ 𝐺) |
| 49 | 48 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ ∈ (𝐹 Coll 𝑧)) → 𝑧 ∈ 𝐺) |
| 50 | 1 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺) → 𝐺 ∈ Univ) |
| 51 | | grumnudlem.3 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐹 = ({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) |
| 52 | | inss2 4213 |
. . . . . . . . . . . . . . . . . . . 20
⊢
({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪
𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) ⊆ (𝐺 × 𝐺) |
| 53 | 51, 52 | eqsstri 4005 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐹 ⊆ (𝐺 × 𝐺) |
| 54 | 53 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺) → 𝐹 ⊆ (𝐺 × 𝐺)) |
| 55 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺) → 𝑧 ∈ 𝐺) |
| 56 | 50, 54, 55 | grucollcld 44284 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺) → (𝐹 Coll 𝑧) ∈ 𝐺) |
| 57 | 27, 49, 56 | syl2an2r 685 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ ∈ (𝐹 Coll 𝑧)) → (𝐹 Coll 𝑧) ∈ 𝐺) |
| 58 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ ∈ (𝐹 Coll 𝑧)) → ℎ ∈ (𝐹 Coll 𝑧)) |
| 59 | | gruel 10817 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 ∈ Univ ∧ (𝐹 Coll 𝑧) ∈ 𝐺 ∧ ℎ ∈ (𝐹 Coll 𝑧)) → ℎ ∈ 𝐺) |
| 60 | 47, 57, 58, 59 | syl3anc 1373 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ ∈ (𝐹 Coll 𝑧)) → ℎ ∈ 𝐺) |
| 61 | 39, 60, 40 | syl2an2r 685 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ ∈ (𝐹 Coll 𝑧)) → (𝑖𝐹ℎ ↔ ∃𝑗(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗))) |
| 62 | 61 | rexbidva 3162 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → (∃ℎ ∈ (𝐹 Coll 𝑧)𝑖𝐹ℎ ↔ ∃ℎ ∈ (𝐹 Coll 𝑧)∃𝑗(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗))) |
| 63 | 46, 62 | mpbid 232 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → ∃ℎ ∈ (𝐹 Coll 𝑧)∃𝑗(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) |
| 64 | | rexcom4 3269 |
. . . . . . . . . . . . 13
⊢
(∃ℎ ∈
(𝐹 Coll 𝑧)∃𝑗(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗) ↔ ∃𝑗∃ℎ ∈ (𝐹 Coll 𝑧)(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) |
| 65 | | grumnudlem.5 |
. . . . . . . . . . . . . . 15
⊢ ((ℎ ∈ (𝐹 Coll 𝑧) ∧ (∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ∈ (𝐹 Coll 𝑧))) |
| 66 | 65 | rexlimiva 3133 |
. . . . . . . . . . . . . 14
⊢
(∃ℎ ∈
(𝐹 Coll 𝑧)(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ∈ (𝐹 Coll 𝑧))) |
| 67 | 66 | exlimiv 1930 |
. . . . . . . . . . . . 13
⊢
(∃𝑗∃ℎ ∈ (𝐹 Coll 𝑧)(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ∈ (𝐹 Coll 𝑧))) |
| 68 | 64, 67 | sylbi 217 |
. . . . . . . . . . . 12
⊢
(∃ℎ ∈
(𝐹 Coll 𝑧)∃𝑗(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ∈ (𝐹 Coll 𝑧))) |
| 69 | 63, 68 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ∈ (𝐹 Coll 𝑧))) |
| 70 | | elssuni 4913 |
. . . . . . . . . . . . . . . . 17
⊢ (∪ 𝑢
∈ (𝐹 Coll 𝑧) → ∪ 𝑢
⊆ ∪ (𝐹 Coll 𝑧)) |
| 71 | | ssun2 4154 |
. . . . . . . . . . . . . . . . 17
⊢ ∪ (𝐹
Coll 𝑧) ⊆ (𝒫
𝑧 ∪ ∪ (𝐹
Coll 𝑧)) |
| 72 | 70, 71 | sstrdi 3971 |
. . . . . . . . . . . . . . . 16
⊢ (∪ 𝑢
∈ (𝐹 Coll 𝑧) → ∪ 𝑢
⊆ (𝒫 𝑧 ∪
∪ (𝐹 Coll 𝑧))) |
| 73 | 72 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧)) ∧ ∪ 𝑢 ∈ (𝐹 Coll 𝑧)) → ∪ 𝑢 ⊆ (𝒫 𝑧 ∪ ∪ (𝐹
Coll 𝑧))) |
| 74 | | simpl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧)) ∧ ∪ 𝑢 ∈ (𝐹 Coll 𝑧)) → 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) |
| 75 | 73, 74 | sseqtrrd 3996 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧)) ∧ ∪ 𝑢 ∈ (𝐹 Coll 𝑧)) → ∪ 𝑢 ⊆ 𝑤) |
| 76 | 75 | ex 412 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧)) → (∪ 𝑢 ∈ (𝐹 Coll 𝑧) → ∪ 𝑢 ⊆ 𝑤)) |
| 77 | 76 | anim2d 612 |
. . . . . . . . . . . 12
⊢ (𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧)) → ((𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ∈ (𝐹 Coll 𝑧)) → (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
| 78 | 77 | reximdv 3155 |
. . . . . . . . . . 11
⊢ (𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧)) → (∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ∈ (𝐹 Coll 𝑧)) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
| 79 | 11, 69, 78 | sylc 65 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) |
| 80 | 79 | rexlimdv3a 3145 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) → (∃𝑣 ∈ 𝐺 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
| 81 | 80 | ralrimiva 3132 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) → ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝐺 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
| 82 | 10, 81 | jca 511 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) → (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝐺 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) |
| 83 | 82 | 3expa 1118 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐺) ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) → (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝐺 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) |
| 84 | | grupw 10809 |
. . . . . . . 8
⊢ ((𝐺 ∈ Univ ∧ 𝑧 ∈ 𝐺) → 𝒫 𝑧 ∈ 𝐺) |
| 85 | 1, 84 | sylan 580 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺) → 𝒫 𝑧 ∈ 𝐺) |
| 86 | | gruuni 10814 |
. . . . . . . 8
⊢ ((𝐺 ∈ Univ ∧ (𝐹 Coll 𝑧) ∈ 𝐺) → ∪ (𝐹 Coll 𝑧) ∈ 𝐺) |
| 87 | 1, 56, 86 | syl2an2r 685 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺) → ∪ (𝐹 Coll 𝑧) ∈ 𝐺) |
| 88 | | gruun 10820 |
. . . . . . 7
⊢ ((𝐺 ∈ Univ ∧ 𝒫
𝑧 ∈ 𝐺 ∧ ∪ (𝐹 Coll 𝑧) ∈ 𝐺) → (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧)) ∈ 𝐺) |
| 89 | 50, 85, 87, 88 | syl3anc 1373 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺) → (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧)) ∈ 𝐺) |
| 90 | 83, 89 | rspcime 3606 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺) → ∃𝑤 ∈ 𝐺 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝐺 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) |
| 91 | 90 | alrimiv 1927 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺) → ∀𝑓∃𝑤 ∈ 𝐺 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝐺 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) |
| 92 | 7, 91 | jca 511 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺) → (𝒫 𝑧 ⊆ 𝐺 ∧ ∀𝑓∃𝑤 ∈ 𝐺 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝐺 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))))) |
| 93 | 92 | ralrimiva 3132 |
. 2
⊢ (𝜑 → ∀𝑧 ∈ 𝐺 (𝒫 𝑧 ⊆ 𝐺 ∧ ∀𝑓∃𝑤 ∈ 𝐺 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝐺 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))))) |
| 94 | | grumnudlem.1 |
. . . 4
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} |
| 95 | 94 | ismnu 44285 |
. . 3
⊢ (𝐺 ∈ Univ → (𝐺 ∈ 𝑀 ↔ ∀𝑧 ∈ 𝐺 (𝒫 𝑧 ⊆ 𝐺 ∧ ∀𝑓∃𝑤 ∈ 𝐺 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝐺 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))))) |
| 96 | 1, 95 | syl 17 |
. 2
⊢ (𝜑 → (𝐺 ∈ 𝑀 ↔ ∀𝑧 ∈ 𝐺 (𝒫 𝑧 ⊆ 𝐺 ∧ ∀𝑓∃𝑤 ∈ 𝐺 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝐺 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))))) |
| 97 | 93, 96 | mpbird 257 |
1
⊢ (𝜑 → 𝐺 ∈ 𝑀) |