| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | grumnudlem.2 | . . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ Univ) | 
| 2 |  | gruss 10836 | . . . . . . . 8
⊢ ((𝐺 ∈ Univ ∧ 𝑧 ∈ 𝐺 ∧ 𝑎 ⊆ 𝑧) → 𝑎 ∈ 𝐺) | 
| 3 | 1, 2 | syl3an1 1164 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑎 ⊆ 𝑧) → 𝑎 ∈ 𝐺) | 
| 4 | 3 | 3expia 1122 | . . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺) → (𝑎 ⊆ 𝑧 → 𝑎 ∈ 𝐺)) | 
| 5 | 4 | alrimiv 1927 | . . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺) → ∀𝑎(𝑎 ⊆ 𝑧 → 𝑎 ∈ 𝐺)) | 
| 6 |  | pwss 4623 | . . . . 5
⊢
(𝒫 𝑧 ⊆
𝐺 ↔ ∀𝑎(𝑎 ⊆ 𝑧 → 𝑎 ∈ 𝐺)) | 
| 7 | 5, 6 | sylibr 234 | . . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺) → 𝒫 𝑧 ⊆ 𝐺) | 
| 8 |  | ssun1 4178 | . . . . . . . . 9
⊢ 𝒫
𝑧 ⊆ (𝒫 𝑧 ∪ ∪ (𝐹
Coll 𝑧)) | 
| 9 |  | simp3 1139 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) → 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) | 
| 10 | 8, 9 | sseqtrrid 4027 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) → 𝒫 𝑧 ⊆ 𝑤) | 
| 11 |  | simp1l3 1269 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) | 
| 12 |  | simp1r 1199 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → 𝑖 ∈ 𝑧) | 
| 13 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((ℎ = ∪
𝑣 ∧ 𝑗 = 𝑣) → 𝑗 = 𝑣) | 
| 14 | 13 | unieqd 4920 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((ℎ = ∪
𝑣 ∧ 𝑗 = 𝑣) → ∪ 𝑗 = ∪
𝑣) | 
| 15 |  | simpl 482 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((ℎ = ∪
𝑣 ∧ 𝑗 = 𝑣) → ℎ = ∪ 𝑣) | 
| 16 | 14, 15 | eqtr4d 2780 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((ℎ = ∪
𝑣 ∧ 𝑗 = 𝑣) → ∪ 𝑗 = ℎ) | 
| 17 | 16 | adantll 714 | . . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ = ∪ 𝑣) ∧ 𝑗 = 𝑣) → ∪ 𝑗 = ℎ) | 
| 18 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ = ∪ 𝑣) ∧ 𝑗 = 𝑣) → 𝑗 = 𝑣) | 
| 19 |  | simpll3 1215 | . . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ = ∪ 𝑣) ∧ 𝑗 = 𝑣) → (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) | 
| 20 | 19 | simprd 495 | . . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ = ∪ 𝑣) ∧ 𝑗 = 𝑣) → 𝑣 ∈ 𝑓) | 
| 21 | 18, 20 | eqeltrd 2841 | . . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ = ∪ 𝑣) ∧ 𝑗 = 𝑣) → 𝑗 ∈ 𝑓) | 
| 22 | 19 | simpld 494 | . . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ = ∪ 𝑣) ∧ 𝑗 = 𝑣) → 𝑖 ∈ 𝑣) | 
| 23 | 22, 18 | eleqtrrd 2844 | . . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ = ∪ 𝑣) ∧ 𝑗 = 𝑣) → 𝑖 ∈ 𝑗) | 
| 24 | 17, 21, 23 | 3jca 1129 | . . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ = ∪ 𝑣) ∧ 𝑗 = 𝑣) → (∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) | 
| 25 |  | simpl2 1193 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ = ∪ 𝑣) → 𝑣 ∈ 𝐺) | 
| 26 | 24, 25 | rr-spce 44217 | . . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ = ∪ 𝑣) → ∃𝑗(∪
𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) | 
| 27 |  | simp1l1 1267 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → 𝜑) | 
| 28 | 27, 1 | syl 17 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → 𝐺 ∈ Univ) | 
| 29 |  | simp2 1138 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → 𝑣 ∈ 𝐺) | 
| 30 |  | gruuni 10840 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝐺 ∈ Univ ∧ 𝑣 ∈ 𝐺) → ∪ 𝑣 ∈ 𝐺) | 
| 31 | 28, 29, 30 | syl2anc 584 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → ∪ 𝑣 ∈ 𝐺) | 
| 32 | 26, 31 | rspcime 3627 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → ∃ℎ ∈ 𝐺 ∃𝑗(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) | 
| 33 |  | simpl1 1192 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) → 𝜑) | 
| 34 | 33, 1 | syl 17 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) → 𝐺 ∈ Univ) | 
| 35 |  | simpl2 1193 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) → 𝑧 ∈ 𝐺) | 
| 36 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) → 𝑖 ∈ 𝑧) | 
| 37 |  | gruel 10843 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺 ∈ Univ ∧ 𝑧 ∈ 𝐺 ∧ 𝑖 ∈ 𝑧) → 𝑖 ∈ 𝐺) | 
| 38 | 34, 35, 36, 37 | syl3anc 1373 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) → 𝑖 ∈ 𝐺) | 
| 39 | 38 | 3ad2ant1 1134 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → 𝑖 ∈ 𝐺) | 
| 40 |  | grumnudlem.4 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ 𝐺 ∧ ℎ ∈ 𝐺) → (𝑖𝐹ℎ ↔ ∃𝑗(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗))) | 
| 41 | 39, 40 | sylan 580 | . . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ ∈ 𝐺) → (𝑖𝐹ℎ ↔ ∃𝑗(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗))) | 
| 42 | 41 | rexbidva 3177 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → (∃ℎ ∈ 𝐺 𝑖𝐹ℎ ↔ ∃ℎ ∈ 𝐺 ∃𝑗(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗))) | 
| 43 | 32, 42 | mpbird 257 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → ∃ℎ ∈ 𝐺 𝑖𝐹ℎ) | 
| 44 |  | rexex 3076 | . . . . . . . . . . . . . . 15
⊢
(∃ℎ ∈
𝐺 𝑖𝐹ℎ → ∃ℎ 𝑖𝐹ℎ) | 
| 45 | 43, 44 | syl 17 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → ∃ℎ 𝑖𝐹ℎ) | 
| 46 | 12, 45 | cpcoll2d 44278 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → ∃ℎ ∈ (𝐹 Coll 𝑧)𝑖𝐹ℎ) | 
| 47 | 28 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ ∈ (𝐹 Coll 𝑧)) → 𝐺 ∈ Univ) | 
| 48 | 35 | 3ad2ant1 1134 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → 𝑧 ∈ 𝐺) | 
| 49 | 48 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ ∈ (𝐹 Coll 𝑧)) → 𝑧 ∈ 𝐺) | 
| 50 | 1 | adantr 480 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺) → 𝐺 ∈ Univ) | 
| 51 |  | grumnudlem.3 | . . . . . . . . . . . . . . . . . . . 20
⊢ 𝐹 = ({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) | 
| 52 |  | inss2 4238 | . . . . . . . . . . . . . . . . . . . 20
⊢
({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪
𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) ⊆ (𝐺 × 𝐺) | 
| 53 | 51, 52 | eqsstri 4030 | . . . . . . . . . . . . . . . . . . 19
⊢ 𝐹 ⊆ (𝐺 × 𝐺) | 
| 54 | 53 | a1i 11 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺) → 𝐹 ⊆ (𝐺 × 𝐺)) | 
| 55 |  | simpr 484 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺) → 𝑧 ∈ 𝐺) | 
| 56 | 50, 54, 55 | grucollcld 44279 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺) → (𝐹 Coll 𝑧) ∈ 𝐺) | 
| 57 | 27, 49, 56 | syl2an2r 685 | . . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ ∈ (𝐹 Coll 𝑧)) → (𝐹 Coll 𝑧) ∈ 𝐺) | 
| 58 |  | simpr 484 | . . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ ∈ (𝐹 Coll 𝑧)) → ℎ ∈ (𝐹 Coll 𝑧)) | 
| 59 |  | gruel 10843 | . . . . . . . . . . . . . . . 16
⊢ ((𝐺 ∈ Univ ∧ (𝐹 Coll 𝑧) ∈ 𝐺 ∧ ℎ ∈ (𝐹 Coll 𝑧)) → ℎ ∈ 𝐺) | 
| 60 | 47, 57, 58, 59 | syl3anc 1373 | . . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ ∈ (𝐹 Coll 𝑧)) → ℎ ∈ 𝐺) | 
| 61 | 39, 60, 40 | syl2an2r 685 | . . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ ∈ (𝐹 Coll 𝑧)) → (𝑖𝐹ℎ ↔ ∃𝑗(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗))) | 
| 62 | 61 | rexbidva 3177 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → (∃ℎ ∈ (𝐹 Coll 𝑧)𝑖𝐹ℎ ↔ ∃ℎ ∈ (𝐹 Coll 𝑧)∃𝑗(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗))) | 
| 63 | 46, 62 | mpbid 232 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → ∃ℎ ∈ (𝐹 Coll 𝑧)∃𝑗(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) | 
| 64 |  | rexcom4 3288 | . . . . . . . . . . . . 13
⊢
(∃ℎ ∈
(𝐹 Coll 𝑧)∃𝑗(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗) ↔ ∃𝑗∃ℎ ∈ (𝐹 Coll 𝑧)(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) | 
| 65 |  | grumnudlem.5 | . . . . . . . . . . . . . . 15
⊢ ((ℎ ∈ (𝐹 Coll 𝑧) ∧ (∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ∈ (𝐹 Coll 𝑧))) | 
| 66 | 65 | rexlimiva 3147 | . . . . . . . . . . . . . 14
⊢
(∃ℎ ∈
(𝐹 Coll 𝑧)(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ∈ (𝐹 Coll 𝑧))) | 
| 67 | 66 | exlimiv 1930 | . . . . . . . . . . . . 13
⊢
(∃𝑗∃ℎ ∈ (𝐹 Coll 𝑧)(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ∈ (𝐹 Coll 𝑧))) | 
| 68 | 64, 67 | sylbi 217 | . . . . . . . . . . . 12
⊢
(∃ℎ ∈
(𝐹 Coll 𝑧)∃𝑗(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ∈ (𝐹 Coll 𝑧))) | 
| 69 | 63, 68 | syl 17 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ∈ (𝐹 Coll 𝑧))) | 
| 70 |  | elssuni 4937 | . . . . . . . . . . . . . . . . 17
⊢ (∪ 𝑢
∈ (𝐹 Coll 𝑧) → ∪ 𝑢
⊆ ∪ (𝐹 Coll 𝑧)) | 
| 71 |  | ssun2 4179 | . . . . . . . . . . . . . . . . 17
⊢ ∪ (𝐹
Coll 𝑧) ⊆ (𝒫
𝑧 ∪ ∪ (𝐹
Coll 𝑧)) | 
| 72 | 70, 71 | sstrdi 3996 | . . . . . . . . . . . . . . . 16
⊢ (∪ 𝑢
∈ (𝐹 Coll 𝑧) → ∪ 𝑢
⊆ (𝒫 𝑧 ∪
∪ (𝐹 Coll 𝑧))) | 
| 73 | 72 | adantl 481 | . . . . . . . . . . . . . . 15
⊢ ((𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧)) ∧ ∪ 𝑢 ∈ (𝐹 Coll 𝑧)) → ∪ 𝑢 ⊆ (𝒫 𝑧 ∪ ∪ (𝐹
Coll 𝑧))) | 
| 74 |  | simpl 482 | . . . . . . . . . . . . . . 15
⊢ ((𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧)) ∧ ∪ 𝑢 ∈ (𝐹 Coll 𝑧)) → 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) | 
| 75 | 73, 74 | sseqtrrd 4021 | . . . . . . . . . . . . . 14
⊢ ((𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧)) ∧ ∪ 𝑢 ∈ (𝐹 Coll 𝑧)) → ∪ 𝑢 ⊆ 𝑤) | 
| 76 | 75 | ex 412 | . . . . . . . . . . . . 13
⊢ (𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧)) → (∪ 𝑢 ∈ (𝐹 Coll 𝑧) → ∪ 𝑢 ⊆ 𝑤)) | 
| 77 | 76 | anim2d 612 | . . . . . . . . . . . 12
⊢ (𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧)) → ((𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ∈ (𝐹 Coll 𝑧)) → (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) | 
| 78 | 77 | reximdv 3170 | . . . . . . . . . . 11
⊢ (𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧)) → (∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ∈ (𝐹 Coll 𝑧)) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) | 
| 79 | 11, 69, 78 | sylc 65 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) | 
| 80 | 79 | rexlimdv3a 3159 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) → (∃𝑣 ∈ 𝐺 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) | 
| 81 | 80 | ralrimiva 3146 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) → ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝐺 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) | 
| 82 | 10, 81 | jca 511 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) → (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝐺 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) | 
| 83 | 82 | 3expa 1119 | . . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐺) ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) → (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝐺 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) | 
| 84 |  | grupw 10835 | . . . . . . . 8
⊢ ((𝐺 ∈ Univ ∧ 𝑧 ∈ 𝐺) → 𝒫 𝑧 ∈ 𝐺) | 
| 85 | 1, 84 | sylan 580 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺) → 𝒫 𝑧 ∈ 𝐺) | 
| 86 |  | gruuni 10840 | . . . . . . . 8
⊢ ((𝐺 ∈ Univ ∧ (𝐹 Coll 𝑧) ∈ 𝐺) → ∪ (𝐹 Coll 𝑧) ∈ 𝐺) | 
| 87 | 1, 56, 86 | syl2an2r 685 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺) → ∪ (𝐹 Coll 𝑧) ∈ 𝐺) | 
| 88 |  | gruun 10846 | . . . . . . 7
⊢ ((𝐺 ∈ Univ ∧ 𝒫
𝑧 ∈ 𝐺 ∧ ∪ (𝐹 Coll 𝑧) ∈ 𝐺) → (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧)) ∈ 𝐺) | 
| 89 | 50, 85, 87, 88 | syl3anc 1373 | . . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺) → (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧)) ∈ 𝐺) | 
| 90 | 83, 89 | rspcime 3627 | . . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺) → ∃𝑤 ∈ 𝐺 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝐺 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) | 
| 91 | 90 | alrimiv 1927 | . . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺) → ∀𝑓∃𝑤 ∈ 𝐺 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝐺 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) | 
| 92 | 7, 91 | jca 511 | . . 3
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺) → (𝒫 𝑧 ⊆ 𝐺 ∧ ∀𝑓∃𝑤 ∈ 𝐺 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝐺 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))))) | 
| 93 | 92 | ralrimiva 3146 | . 2
⊢ (𝜑 → ∀𝑧 ∈ 𝐺 (𝒫 𝑧 ⊆ 𝐺 ∧ ∀𝑓∃𝑤 ∈ 𝐺 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝐺 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))))) | 
| 94 |  | grumnudlem.1 | . . . 4
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} | 
| 95 | 94 | ismnu 44280 | . . 3
⊢ (𝐺 ∈ Univ → (𝐺 ∈ 𝑀 ↔ ∀𝑧 ∈ 𝐺 (𝒫 𝑧 ⊆ 𝐺 ∧ ∀𝑓∃𝑤 ∈ 𝐺 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝐺 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))))) | 
| 96 | 1, 95 | syl 17 | . 2
⊢ (𝜑 → (𝐺 ∈ 𝑀 ↔ ∀𝑧 ∈ 𝐺 (𝒫 𝑧 ⊆ 𝐺 ∧ ∀𝑓∃𝑤 ∈ 𝐺 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝐺 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))))) | 
| 97 | 93, 96 | mpbird 257 | 1
⊢ (𝜑 → 𝐺 ∈ 𝑀) |