Step | Hyp | Ref
| Expression |
1 | | grumnudlem.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ Univ) |
2 | | gruss 10552 |
. . . . . . . 8
⊢ ((𝐺 ∈ Univ ∧ 𝑧 ∈ 𝐺 ∧ 𝑎 ⊆ 𝑧) → 𝑎 ∈ 𝐺) |
3 | 1, 2 | syl3an1 1162 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑎 ⊆ 𝑧) → 𝑎 ∈ 𝐺) |
4 | 3 | 3expia 1120 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺) → (𝑎 ⊆ 𝑧 → 𝑎 ∈ 𝐺)) |
5 | 4 | alrimiv 1930 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺) → ∀𝑎(𝑎 ⊆ 𝑧 → 𝑎 ∈ 𝐺)) |
6 | | pwss 4558 |
. . . . 5
⊢
(𝒫 𝑧 ⊆
𝐺 ↔ ∀𝑎(𝑎 ⊆ 𝑧 → 𝑎 ∈ 𝐺)) |
7 | 5, 6 | sylibr 233 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺) → 𝒫 𝑧 ⊆ 𝐺) |
8 | | ssun1 4106 |
. . . . . . . . 9
⊢ 𝒫
𝑧 ⊆ (𝒫 𝑧 ∪ ∪ (𝐹
Coll 𝑧)) |
9 | | simp3 1137 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) → 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) |
10 | 8, 9 | sseqtrrid 3974 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) → 𝒫 𝑧 ⊆ 𝑤) |
11 | | simp1l3 1267 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) |
12 | | simp1r 1197 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → 𝑖 ∈ 𝑧) |
13 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((ℎ = ∪
𝑣 ∧ 𝑗 = 𝑣) → 𝑗 = 𝑣) |
14 | 13 | unieqd 4853 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((ℎ = ∪
𝑣 ∧ 𝑗 = 𝑣) → ∪ 𝑗 = ∪
𝑣) |
15 | | simpl 483 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((ℎ = ∪
𝑣 ∧ 𝑗 = 𝑣) → ℎ = ∪ 𝑣) |
16 | 14, 15 | eqtr4d 2781 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((ℎ = ∪
𝑣 ∧ 𝑗 = 𝑣) → ∪ 𝑗 = ℎ) |
17 | 16 | adantll 711 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ = ∪ 𝑣) ∧ 𝑗 = 𝑣) → ∪ 𝑗 = ℎ) |
18 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ = ∪ 𝑣) ∧ 𝑗 = 𝑣) → 𝑗 = 𝑣) |
19 | | simpll3 1213 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ = ∪ 𝑣) ∧ 𝑗 = 𝑣) → (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) |
20 | 19 | simprd 496 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ = ∪ 𝑣) ∧ 𝑗 = 𝑣) → 𝑣 ∈ 𝑓) |
21 | 18, 20 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ = ∪ 𝑣) ∧ 𝑗 = 𝑣) → 𝑗 ∈ 𝑓) |
22 | 19 | simpld 495 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ = ∪ 𝑣) ∧ 𝑗 = 𝑣) → 𝑖 ∈ 𝑣) |
23 | 22, 18 | eleqtrrd 2842 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ = ∪ 𝑣) ∧ 𝑗 = 𝑣) → 𝑖 ∈ 𝑗) |
24 | 17, 21, 23 | 3jca 1127 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ = ∪ 𝑣) ∧ 𝑗 = 𝑣) → (∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) |
25 | | simpl2 1191 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ = ∪ 𝑣) → 𝑣 ∈ 𝐺) |
26 | 24, 25 | rr-spce 41815 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ = ∪ 𝑣) → ∃𝑗(∪
𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) |
27 | | simp1l1 1265 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → 𝜑) |
28 | 27, 1 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → 𝐺 ∈ Univ) |
29 | | simp2 1136 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → 𝑣 ∈ 𝐺) |
30 | | gruuni 10556 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺 ∈ Univ ∧ 𝑣 ∈ 𝐺) → ∪ 𝑣 ∈ 𝐺) |
31 | 28, 29, 30 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → ∪ 𝑣 ∈ 𝐺) |
32 | 26, 31 | rspcime 3564 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → ∃ℎ ∈ 𝐺 ∃𝑗(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) |
33 | | simpl1 1190 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) → 𝜑) |
34 | 33, 1 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) → 𝐺 ∈ Univ) |
35 | | simpl2 1191 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) → 𝑧 ∈ 𝐺) |
36 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) → 𝑖 ∈ 𝑧) |
37 | | gruel 10559 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺 ∈ Univ ∧ 𝑧 ∈ 𝐺 ∧ 𝑖 ∈ 𝑧) → 𝑖 ∈ 𝐺) |
38 | 34, 35, 36, 37 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) → 𝑖 ∈ 𝐺) |
39 | 38 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → 𝑖 ∈ 𝐺) |
40 | | grumnudlem.4 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ 𝐺 ∧ ℎ ∈ 𝐺) → (𝑖𝐹ℎ ↔ ∃𝑗(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗))) |
41 | 39, 40 | sylan 580 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ ∈ 𝐺) → (𝑖𝐹ℎ ↔ ∃𝑗(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗))) |
42 | 41 | rexbidva 3225 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → (∃ℎ ∈ 𝐺 𝑖𝐹ℎ ↔ ∃ℎ ∈ 𝐺 ∃𝑗(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗))) |
43 | 32, 42 | mpbird 256 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → ∃ℎ ∈ 𝐺 𝑖𝐹ℎ) |
44 | | rexex 3171 |
. . . . . . . . . . . . . . 15
⊢
(∃ℎ ∈
𝐺 𝑖𝐹ℎ → ∃ℎ 𝑖𝐹ℎ) |
45 | 43, 44 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → ∃ℎ 𝑖𝐹ℎ) |
46 | 12, 45 | cpcoll2d 41877 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → ∃ℎ ∈ (𝐹 Coll 𝑧)𝑖𝐹ℎ) |
47 | 28 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ ∈ (𝐹 Coll 𝑧)) → 𝐺 ∈ Univ) |
48 | 35 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → 𝑧 ∈ 𝐺) |
49 | 48 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ ∈ (𝐹 Coll 𝑧)) → 𝑧 ∈ 𝐺) |
50 | 1 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺) → 𝐺 ∈ Univ) |
51 | | grumnudlem.3 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐹 = ({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) |
52 | | inss2 4163 |
. . . . . . . . . . . . . . . . . . . 20
⊢
({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪
𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) ⊆ (𝐺 × 𝐺) |
53 | 51, 52 | eqsstri 3955 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐹 ⊆ (𝐺 × 𝐺) |
54 | 53 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺) → 𝐹 ⊆ (𝐺 × 𝐺)) |
55 | | simpr 485 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺) → 𝑧 ∈ 𝐺) |
56 | 50, 54, 55 | grucollcld 41878 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺) → (𝐹 Coll 𝑧) ∈ 𝐺) |
57 | 27, 49, 56 | syl2an2r 682 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ ∈ (𝐹 Coll 𝑧)) → (𝐹 Coll 𝑧) ∈ 𝐺) |
58 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ ∈ (𝐹 Coll 𝑧)) → ℎ ∈ (𝐹 Coll 𝑧)) |
59 | | gruel 10559 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 ∈ Univ ∧ (𝐹 Coll 𝑧) ∈ 𝐺 ∧ ℎ ∈ (𝐹 Coll 𝑧)) → ℎ ∈ 𝐺) |
60 | 47, 57, 58, 59 | syl3anc 1370 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ ∈ (𝐹 Coll 𝑧)) → ℎ ∈ 𝐺) |
61 | 39, 60, 40 | syl2an2r 682 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) ∧ ℎ ∈ (𝐹 Coll 𝑧)) → (𝑖𝐹ℎ ↔ ∃𝑗(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗))) |
62 | 61 | rexbidva 3225 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → (∃ℎ ∈ (𝐹 Coll 𝑧)𝑖𝐹ℎ ↔ ∃ℎ ∈ (𝐹 Coll 𝑧)∃𝑗(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗))) |
63 | 46, 62 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → ∃ℎ ∈ (𝐹 Coll 𝑧)∃𝑗(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) |
64 | | rexcom4 3233 |
. . . . . . . . . . . . 13
⊢
(∃ℎ ∈
(𝐹 Coll 𝑧)∃𝑗(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗) ↔ ∃𝑗∃ℎ ∈ (𝐹 Coll 𝑧)(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) |
65 | | grumnudlem.5 |
. . . . . . . . . . . . . . 15
⊢ ((ℎ ∈ (𝐹 Coll 𝑧) ∧ (∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ∈ (𝐹 Coll 𝑧))) |
66 | 65 | rexlimiva 3210 |
. . . . . . . . . . . . . 14
⊢
(∃ℎ ∈
(𝐹 Coll 𝑧)(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ∈ (𝐹 Coll 𝑧))) |
67 | 66 | exlimiv 1933 |
. . . . . . . . . . . . 13
⊢
(∃𝑗∃ℎ ∈ (𝐹 Coll 𝑧)(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ∈ (𝐹 Coll 𝑧))) |
68 | 64, 67 | sylbi 216 |
. . . . . . . . . . . 12
⊢
(∃ℎ ∈
(𝐹 Coll 𝑧)∃𝑗(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ∈ (𝐹 Coll 𝑧))) |
69 | 63, 68 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ∈ (𝐹 Coll 𝑧))) |
70 | | elssuni 4871 |
. . . . . . . . . . . . . . . . 17
⊢ (∪ 𝑢
∈ (𝐹 Coll 𝑧) → ∪ 𝑢
⊆ ∪ (𝐹 Coll 𝑧)) |
71 | | ssun2 4107 |
. . . . . . . . . . . . . . . . 17
⊢ ∪ (𝐹
Coll 𝑧) ⊆ (𝒫
𝑧 ∪ ∪ (𝐹
Coll 𝑧)) |
72 | 70, 71 | sstrdi 3933 |
. . . . . . . . . . . . . . . 16
⊢ (∪ 𝑢
∈ (𝐹 Coll 𝑧) → ∪ 𝑢
⊆ (𝒫 𝑧 ∪
∪ (𝐹 Coll 𝑧))) |
73 | 72 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧)) ∧ ∪ 𝑢 ∈ (𝐹 Coll 𝑧)) → ∪ 𝑢 ⊆ (𝒫 𝑧 ∪ ∪ (𝐹
Coll 𝑧))) |
74 | | simpl 483 |
. . . . . . . . . . . . . . 15
⊢ ((𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧)) ∧ ∪ 𝑢 ∈ (𝐹 Coll 𝑧)) → 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) |
75 | 73, 74 | sseqtrrd 3962 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧)) ∧ ∪ 𝑢 ∈ (𝐹 Coll 𝑧)) → ∪ 𝑢 ⊆ 𝑤) |
76 | 75 | ex 413 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧)) → (∪ 𝑢 ∈ (𝐹 Coll 𝑧) → ∪ 𝑢 ⊆ 𝑤)) |
77 | 76 | anim2d 612 |
. . . . . . . . . . . 12
⊢ (𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧)) → ((𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ∈ (𝐹 Coll 𝑧)) → (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
78 | 77 | reximdv 3202 |
. . . . . . . . . . 11
⊢ (𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧)) → (∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ∈ (𝐹 Coll 𝑧)) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
79 | 11, 69, 78 | sylc 65 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) ∧ 𝑣 ∈ 𝐺 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) |
80 | 79 | rexlimdv3a 3215 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) ∧ 𝑖 ∈ 𝑧) → (∃𝑣 ∈ 𝐺 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
81 | 80 | ralrimiva 3103 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) → ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝐺 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
82 | 10, 81 | jca 512 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺 ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) → (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝐺 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) |
83 | 82 | 3expa 1117 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐺) ∧ 𝑤 = (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧))) → (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝐺 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) |
84 | | grupw 10551 |
. . . . . . . 8
⊢ ((𝐺 ∈ Univ ∧ 𝑧 ∈ 𝐺) → 𝒫 𝑧 ∈ 𝐺) |
85 | 1, 84 | sylan 580 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺) → 𝒫 𝑧 ∈ 𝐺) |
86 | | gruuni 10556 |
. . . . . . . 8
⊢ ((𝐺 ∈ Univ ∧ (𝐹 Coll 𝑧) ∈ 𝐺) → ∪ (𝐹 Coll 𝑧) ∈ 𝐺) |
87 | 1, 56, 86 | syl2an2r 682 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺) → ∪ (𝐹 Coll 𝑧) ∈ 𝐺) |
88 | | gruun 10562 |
. . . . . . 7
⊢ ((𝐺 ∈ Univ ∧ 𝒫
𝑧 ∈ 𝐺 ∧ ∪ (𝐹 Coll 𝑧) ∈ 𝐺) → (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧)) ∈ 𝐺) |
89 | 50, 85, 87, 88 | syl3anc 1370 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺) → (𝒫 𝑧 ∪ ∪ (𝐹 Coll 𝑧)) ∈ 𝐺) |
90 | 83, 89 | rspcime 3564 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺) → ∃𝑤 ∈ 𝐺 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝐺 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) |
91 | 90 | alrimiv 1930 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺) → ∀𝑓∃𝑤 ∈ 𝐺 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝐺 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) |
92 | 7, 91 | jca 512 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐺) → (𝒫 𝑧 ⊆ 𝐺 ∧ ∀𝑓∃𝑤 ∈ 𝐺 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝐺 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))))) |
93 | 92 | ralrimiva 3103 |
. 2
⊢ (𝜑 → ∀𝑧 ∈ 𝐺 (𝒫 𝑧 ⊆ 𝐺 ∧ ∀𝑓∃𝑤 ∈ 𝐺 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝐺 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))))) |
94 | | grumnudlem.1 |
. . . 4
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} |
95 | 94 | ismnu 41879 |
. . 3
⊢ (𝐺 ∈ Univ → (𝐺 ∈ 𝑀 ↔ ∀𝑧 ∈ 𝐺 (𝒫 𝑧 ⊆ 𝐺 ∧ ∀𝑓∃𝑤 ∈ 𝐺 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝐺 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))))) |
96 | 1, 95 | syl 17 |
. 2
⊢ (𝜑 → (𝐺 ∈ 𝑀 ↔ ∀𝑧 ∈ 𝐺 (𝒫 𝑧 ⊆ 𝐺 ∧ ∀𝑓∃𝑤 ∈ 𝐺 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝐺 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))))) |
97 | 93, 96 | mpbird 256 |
1
⊢ (𝜑 → 𝐺 ∈ 𝑀) |