Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grumnudlem Structured version   Visualization version   GIF version

Theorem grumnudlem 41528
Description: Lemma for grumnud 41529. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
grumnudlem.1 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
grumnudlem.2 (𝜑𝐺 ∈ Univ)
grumnudlem.3 𝐹 = ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺))
grumnudlem.4 ((𝑖𝐺𝐺) → (𝑖𝐹 ↔ ∃𝑗( 𝑗 = 𝑗𝑓𝑖𝑗)))
grumnudlem.5 (( ∈ (𝐹 Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) → ∃𝑢𝑓 (𝑖𝑢 𝑢 ∈ (𝐹 Coll 𝑧)))
Assertion
Ref Expression
grumnudlem (𝜑𝐺𝑀)
Distinct variable groups:   𝜑,𝑧,𝑓,,𝑗   𝑧,𝐺   𝑓,,𝑗,𝐺   𝜑,𝑓,,𝑖,𝑗   𝑢,,𝑖,𝑗,𝐹   𝑧,𝑖,𝑘,𝑚,𝑛,𝑞,𝑝,𝑙,𝑓,𝐺   𝑧,𝑢,𝑟,𝑓,𝑘,𝑚,𝑛,𝐺,𝑝,𝑙,𝑖
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑏,𝑐,𝑑,𝑙)   𝐹(𝑧,𝑓,𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑏,𝑐,𝑑,𝑙)   𝐺(𝑏,𝑐,𝑑)   𝑀(𝑧,𝑢,𝑓,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑏,𝑐,𝑑,𝑙)

Proof of Theorem grumnudlem
Dummy variables 𝑎 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grumnudlem.2 . . . . . . . 8 (𝜑𝐺 ∈ Univ)
2 gruss 10393 . . . . . . . 8 ((𝐺 ∈ Univ ∧ 𝑧𝐺𝑎𝑧) → 𝑎𝐺)
31, 2syl3an1 1165 . . . . . . 7 ((𝜑𝑧𝐺𝑎𝑧) → 𝑎𝐺)
433expia 1123 . . . . . 6 ((𝜑𝑧𝐺) → (𝑎𝑧𝑎𝐺))
54alrimiv 1935 . . . . 5 ((𝜑𝑧𝐺) → ∀𝑎(𝑎𝑧𝑎𝐺))
6 pwss 4528 . . . . 5 (𝒫 𝑧𝐺 ↔ ∀𝑎(𝑎𝑧𝑎𝐺))
75, 6sylibr 237 . . . 4 ((𝜑𝑧𝐺) → 𝒫 𝑧𝐺)
8 ssun1 4076 . . . . . . . . 9 𝒫 𝑧 ⊆ (𝒫 𝑧 (𝐹 Coll 𝑧))
9 simp3 1140 . . . . . . . . 9 ((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) → 𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧)))
108, 9sseqtrrid 3944 . . . . . . . 8 ((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) → 𝒫 𝑧𝑤)
11 simp1l3 1270 . . . . . . . . . . 11 ((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) → 𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧)))
12 simp1r 1200 . . . . . . . . . . . . . 14 ((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) → 𝑖𝑧)
13 simpr 488 . . . . . . . . . . . . . . . . . . . . . 22 (( = 𝑣𝑗 = 𝑣) → 𝑗 = 𝑣)
1413unieqd 4823 . . . . . . . . . . . . . . . . . . . . 21 (( = 𝑣𝑗 = 𝑣) → 𝑗 = 𝑣)
15 simpl 486 . . . . . . . . . . . . . . . . . . . . 21 (( = 𝑣𝑗 = 𝑣) → = 𝑣)
1614, 15eqtr4d 2777 . . . . . . . . . . . . . . . . . . . 20 (( = 𝑣𝑗 = 𝑣) → 𝑗 = )
1716adantll 714 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) ∧ = 𝑣) ∧ 𝑗 = 𝑣) → 𝑗 = )
18 simpr 488 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) ∧ = 𝑣) ∧ 𝑗 = 𝑣) → 𝑗 = 𝑣)
19 simpll3 1216 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) ∧ = 𝑣) ∧ 𝑗 = 𝑣) → (𝑖𝑣𝑣𝑓))
2019simprd 499 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) ∧ = 𝑣) ∧ 𝑗 = 𝑣) → 𝑣𝑓)
2118, 20eqeltrd 2834 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) ∧ = 𝑣) ∧ 𝑗 = 𝑣) → 𝑗𝑓)
2219simpld 498 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) ∧ = 𝑣) ∧ 𝑗 = 𝑣) → 𝑖𝑣)
2322, 18eleqtrrd 2837 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) ∧ = 𝑣) ∧ 𝑗 = 𝑣) → 𝑖𝑗)
2417, 21, 233jca 1130 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) ∧ = 𝑣) ∧ 𝑗 = 𝑣) → ( 𝑗 = 𝑗𝑓𝑖𝑗))
25 simpl2 1194 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) ∧ = 𝑣) → 𝑣𝐺)
2624, 25rr-spce 41445 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) ∧ = 𝑣) → ∃𝑗( 𝑗 = 𝑗𝑓𝑖𝑗))
27 simp1l1 1268 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) → 𝜑)
2827, 1syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) → 𝐺 ∈ Univ)
29 simp2 1139 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) → 𝑣𝐺)
30 gruuni 10397 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Univ ∧ 𝑣𝐺) → 𝑣𝐺)
3128, 29, 30syl2anc 587 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) → 𝑣𝐺)
3226, 31rspcime 3534 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) → ∃𝐺𝑗( 𝑗 = 𝑗𝑓𝑖𝑗))
33 simpl1 1193 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) → 𝜑)
3433, 1syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) → 𝐺 ∈ Univ)
35 simpl2 1194 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) → 𝑧𝐺)
36 simpr 488 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) → 𝑖𝑧)
37 gruel 10400 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ Univ ∧ 𝑧𝐺𝑖𝑧) → 𝑖𝐺)
3834, 35, 36, 37syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) → 𝑖𝐺)
39383ad2ant1 1135 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) → 𝑖𝐺)
40 grumnudlem.4 . . . . . . . . . . . . . . . . . 18 ((𝑖𝐺𝐺) → (𝑖𝐹 ↔ ∃𝑗( 𝑗 = 𝑗𝑓𝑖𝑗)))
4139, 40sylan 583 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) ∧ 𝐺) → (𝑖𝐹 ↔ ∃𝑗( 𝑗 = 𝑗𝑓𝑖𝑗)))
4241rexbidva 3208 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) → (∃𝐺 𝑖𝐹 ↔ ∃𝐺𝑗( 𝑗 = 𝑗𝑓𝑖𝑗)))
4332, 42mpbird 260 . . . . . . . . . . . . . . 15 ((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) → ∃𝐺 𝑖𝐹)
44 rexex 3155 . . . . . . . . . . . . . . 15 (∃𝐺 𝑖𝐹 → ∃ 𝑖𝐹)
4543, 44syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) → ∃ 𝑖𝐹)
4612, 45cpcoll2d 41502 . . . . . . . . . . . . 13 ((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) → ∃ ∈ (𝐹 Coll 𝑧)𝑖𝐹)
4728adantr 484 . . . . . . . . . . . . . . . 16 (((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) ∧ ∈ (𝐹 Coll 𝑧)) → 𝐺 ∈ Univ)
48353ad2ant1 1135 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) → 𝑧𝐺)
4948adantr 484 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) ∧ ∈ (𝐹 Coll 𝑧)) → 𝑧𝐺)
501adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝐺) → 𝐺 ∈ Univ)
51 grumnudlem.3 . . . . . . . . . . . . . . . . . . . 20 𝐹 = ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺))
52 inss2 4134 . . . . . . . . . . . . . . . . . . . 20 ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) ⊆ (𝐺 × 𝐺)
5351, 52eqsstri 3925 . . . . . . . . . . . . . . . . . . 19 𝐹 ⊆ (𝐺 × 𝐺)
5453a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝐺) → 𝐹 ⊆ (𝐺 × 𝐺))
55 simpr 488 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝐺) → 𝑧𝐺)
5650, 54, 55grucollcld 41503 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝐺) → (𝐹 Coll 𝑧) ∈ 𝐺)
5727, 49, 56syl2an2r 685 . . . . . . . . . . . . . . . 16 (((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) ∧ ∈ (𝐹 Coll 𝑧)) → (𝐹 Coll 𝑧) ∈ 𝐺)
58 simpr 488 . . . . . . . . . . . . . . . 16 (((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) ∧ ∈ (𝐹 Coll 𝑧)) → ∈ (𝐹 Coll 𝑧))
59 gruel 10400 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Univ ∧ (𝐹 Coll 𝑧) ∈ 𝐺 ∈ (𝐹 Coll 𝑧)) → 𝐺)
6047, 57, 58, 59syl3anc 1373 . . . . . . . . . . . . . . 15 (((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) ∧ ∈ (𝐹 Coll 𝑧)) → 𝐺)
6139, 60, 40syl2an2r 685 . . . . . . . . . . . . . 14 (((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) ∧ ∈ (𝐹 Coll 𝑧)) → (𝑖𝐹 ↔ ∃𝑗( 𝑗 = 𝑗𝑓𝑖𝑗)))
6261rexbidva 3208 . . . . . . . . . . . . 13 ((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) → (∃ ∈ (𝐹 Coll 𝑧)𝑖𝐹 ↔ ∃ ∈ (𝐹 Coll 𝑧)∃𝑗( 𝑗 = 𝑗𝑓𝑖𝑗)))
6346, 62mpbid 235 . . . . . . . . . . . 12 ((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) → ∃ ∈ (𝐹 Coll 𝑧)∃𝑗( 𝑗 = 𝑗𝑓𝑖𝑗))
64 rexcom4 3165 . . . . . . . . . . . . 13 (∃ ∈ (𝐹 Coll 𝑧)∃𝑗( 𝑗 = 𝑗𝑓𝑖𝑗) ↔ ∃𝑗 ∈ (𝐹 Coll 𝑧)( 𝑗 = 𝑗𝑓𝑖𝑗))
65 grumnudlem.5 . . . . . . . . . . . . . . 15 (( ∈ (𝐹 Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) → ∃𝑢𝑓 (𝑖𝑢 𝑢 ∈ (𝐹 Coll 𝑧)))
6665rexlimiva 3193 . . . . . . . . . . . . . 14 (∃ ∈ (𝐹 Coll 𝑧)( 𝑗 = 𝑗𝑓𝑖𝑗) → ∃𝑢𝑓 (𝑖𝑢 𝑢 ∈ (𝐹 Coll 𝑧)))
6766exlimiv 1938 . . . . . . . . . . . . 13 (∃𝑗 ∈ (𝐹 Coll 𝑧)( 𝑗 = 𝑗𝑓𝑖𝑗) → ∃𝑢𝑓 (𝑖𝑢 𝑢 ∈ (𝐹 Coll 𝑧)))
6864, 67sylbi 220 . . . . . . . . . . . 12 (∃ ∈ (𝐹 Coll 𝑧)∃𝑗( 𝑗 = 𝑗𝑓𝑖𝑗) → ∃𝑢𝑓 (𝑖𝑢 𝑢 ∈ (𝐹 Coll 𝑧)))
6963, 68syl 17 . . . . . . . . . . 11 ((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) → ∃𝑢𝑓 (𝑖𝑢 𝑢 ∈ (𝐹 Coll 𝑧)))
70 elssuni 4841 . . . . . . . . . . . . . . . . 17 ( 𝑢 ∈ (𝐹 Coll 𝑧) → 𝑢 (𝐹 Coll 𝑧))
71 ssun2 4077 . . . . . . . . . . . . . . . . 17 (𝐹 Coll 𝑧) ⊆ (𝒫 𝑧 (𝐹 Coll 𝑧))
7270, 71sstrdi 3903 . . . . . . . . . . . . . . . 16 ( 𝑢 ∈ (𝐹 Coll 𝑧) → 𝑢 ⊆ (𝒫 𝑧 (𝐹 Coll 𝑧)))
7372adantl 485 . . . . . . . . . . . . . . 15 ((𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧)) ∧ 𝑢 ∈ (𝐹 Coll 𝑧)) → 𝑢 ⊆ (𝒫 𝑧 (𝐹 Coll 𝑧)))
74 simpl 486 . . . . . . . . . . . . . . 15 ((𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧)) ∧ 𝑢 ∈ (𝐹 Coll 𝑧)) → 𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧)))
7573, 74sseqtrrd 3932 . . . . . . . . . . . . . 14 ((𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧)) ∧ 𝑢 ∈ (𝐹 Coll 𝑧)) → 𝑢𝑤)
7675ex 416 . . . . . . . . . . . . 13 (𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧)) → ( 𝑢 ∈ (𝐹 Coll 𝑧) → 𝑢𝑤))
7776anim2d 615 . . . . . . . . . . . 12 (𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧)) → ((𝑖𝑢 𝑢 ∈ (𝐹 Coll 𝑧)) → (𝑖𝑢 𝑢𝑤)))
7877reximdv 3185 . . . . . . . . . . 11 (𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧)) → (∃𝑢𝑓 (𝑖𝑢 𝑢 ∈ (𝐹 Coll 𝑧)) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤)))
7911, 69, 78sylc 65 . . . . . . . . . 10 ((((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) ∧ 𝑣𝐺 ∧ (𝑖𝑣𝑣𝑓)) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))
8079rexlimdv3a 3198 . . . . . . . . 9 (((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) ∧ 𝑖𝑧) → (∃𝑣𝐺 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤)))
8180ralrimiva 3098 . . . . . . . 8 ((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) → ∀𝑖𝑧 (∃𝑣𝐺 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤)))
8210, 81jca 515 . . . . . . 7 ((𝜑𝑧𝐺𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) → (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝐺 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))))
83823expa 1120 . . . . . 6 (((𝜑𝑧𝐺) ∧ 𝑤 = (𝒫 𝑧 (𝐹 Coll 𝑧))) → (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝐺 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))))
84 grupw 10392 . . . . . . . 8 ((𝐺 ∈ Univ ∧ 𝑧𝐺) → 𝒫 𝑧𝐺)
851, 84sylan 583 . . . . . . 7 ((𝜑𝑧𝐺) → 𝒫 𝑧𝐺)
86 gruuni 10397 . . . . . . . 8 ((𝐺 ∈ Univ ∧ (𝐹 Coll 𝑧) ∈ 𝐺) → (𝐹 Coll 𝑧) ∈ 𝐺)
871, 56, 86syl2an2r 685 . . . . . . 7 ((𝜑𝑧𝐺) → (𝐹 Coll 𝑧) ∈ 𝐺)
88 gruun 10403 . . . . . . 7 ((𝐺 ∈ Univ ∧ 𝒫 𝑧𝐺 (𝐹 Coll 𝑧) ∈ 𝐺) → (𝒫 𝑧 (𝐹 Coll 𝑧)) ∈ 𝐺)
8950, 85, 87, 88syl3anc 1373 . . . . . 6 ((𝜑𝑧𝐺) → (𝒫 𝑧 (𝐹 Coll 𝑧)) ∈ 𝐺)
9083, 89rspcime 3534 . . . . 5 ((𝜑𝑧𝐺) → ∃𝑤𝐺 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝐺 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))))
9190alrimiv 1935 . . . 4 ((𝜑𝑧𝐺) → ∀𝑓𝑤𝐺 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝐺 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))))
927, 91jca 515 . . 3 ((𝜑𝑧𝐺) → (𝒫 𝑧𝐺 ∧ ∀𝑓𝑤𝐺 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝐺 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤)))))
9392ralrimiva 3098 . 2 (𝜑 → ∀𝑧𝐺 (𝒫 𝑧𝐺 ∧ ∀𝑓𝑤𝐺 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝐺 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤)))))
94 grumnudlem.1 . . . 4 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
9594ismnu 41504 . . 3 (𝐺 ∈ Univ → (𝐺𝑀 ↔ ∀𝑧𝐺 (𝒫 𝑧𝐺 ∧ ∀𝑓𝑤𝐺 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝐺 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))))))
961, 95syl 17 . 2 (𝜑 → (𝐺𝑀 ↔ ∀𝑧𝐺 (𝒫 𝑧𝐺 ∧ ∀𝑓𝑤𝐺 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝐺 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))))))
9793, 96mpbird 260 1 (𝜑𝐺𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089  wal 1541   = wceq 1543  wex 1787  wcel 2110  {cab 2712  wral 3054  wrex 3055  cun 3855  cin 3856  wss 3857  𝒫 cpw 4503   cuni 4809   class class class wbr 5043  {copab 5105   × cxp 5538  Univcgru 10387   Coll ccoll 41493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-reg 9197  ax-inf2 9245  ax-ac2 10060
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-iin 4897  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-map 8499  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-tc 9342  df-r1 9363  df-rank 9364  df-card 9538  df-cf 9540  df-acn 9541  df-ac 9713  df-wina 10281  df-ina 10282  df-gru 10388  df-scott 41479  df-coll 41494
This theorem is referenced by:  grumnud  41529
  Copyright terms: Public domain W3C validator